Name: \qquad
Unit Five: Circle Introduction (HWO)
Date: \qquad Period: \qquad

All circles are similar to one another because one circle can always be mapped onto another by a translation vector and a dilation. Below is an example of how to complete these transformations.

Map Circle A to Circle B

Translation Vector:
To find this, start at the preimage circle's center and create a path to the image circle's center. (Look at the arrows to the right.)
The center needs to move 11 right and 4 down. $\rightarrow \mathbf{T}_{<11,-4>}$

Scale Factor: To find this, compare the preimage circle's radius to the image circle's radius. Determine what multiplier will transform the preimage radius length into the image radius length.

Preimage Radius $($ Circle A $)=2 \quad$ Image Radius $($ Circle B) $=4$
The preimage radius must be multiplies by 2 to equal this image radius, so the scale factor should be 2 .

Your Turn:

1. Look at the description below each graph and describe the transformations that map the preimage to the image. The transformation will involve a translation and a dilation/scale factor.
a)
b)

Circle B to Circle A

Circle A to Circle B

Translation:
Scale Factor:
2. Determine the translation that would map the center of circle A onto the center of circle B. If you need a quick graph to help you, use the space below each problem to sketch it out.

Circle A	Circle B
A $(-3,-11)$	B $(4,7)$

Translation: \qquad

Circle A	Circle B
A $(0,-8)$	B $(-3,2)$

Translation: \qquad
3. What scale factor would make circle A the same size as circle B?

Circle A	Circle B
Radius $_{A}=12 \mathrm{~cm}$	Radius $_{B}=3 \mathrm{~cm}$

Circle A	Circle B
Radius $_{A}=6 \mathrm{~cm}$	Radius $_{B}=8 \mathrm{~cm}$

Scale Factor: \qquad Scale Factor: \qquad

Using what you know about circles, find the requested information.
a) Area $=36 \pi \quad r=$ \qquad
b) $C=10 \pi r=$
c) $d=7 \mathrm{~cm}$
$r=$ \qquad
d) $r=$ \qquad
e) $r=$ \qquad (E)

Square inscribed

