Geometry (G.GMD.3)
Unit Three: Spheres (HW10)

Name:
Date: \qquad Period: \qquad

1. Determine the volume of the solid.
a)

$$
\begin{aligned}
& \mathrm{V}=\frac{4 \pi r^{3}}{3} \\
& \mathrm{~V}=\frac{4 \pi(6)^{3}}{3}=\frac{864 \pi}{3}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \mathrm{V}=\frac{4 \pi r^{3}}{3} \\
& \mathrm{~V}=\frac{4 \pi(3)^{3}}{3}=\frac{108 \pi}{3}
\end{aligned}
$$

Volume $=288 \pi \mathrm{~cm}^{3}$
Volume $=36 \pi \mathrm{~cm}^{3}$
c)

d)

Hemisphere
$\mathrm{V}=\frac{2 \pi r^{3}}{3}$
$\mathrm{V}=\frac{2 \pi(10)^{3}}{3}=\frac{2000 \pi}{3}$

Hemisphere + cylinder
$\frac{128 \pi}{3}+80 \pi$
Volume $=\xrightarrow{\frac{368 \pi}{3}}=122 \frac{2}{3} \pi \mathrm{~cm}_{(\mathrm{E})}{ }^{3}$
Volume $=\underline{\frac{2000 \pi}{3}} \mathrm{~cm}^{3}$
e)

$$
r=12
$$

$=6912 \pi-4608 \pi$

Two tennis balls fits exactly in the
48 cm tall cylinderical can. What is the voume of air in the can?

Volume of tennis ball

$$
\begin{aligned}
& \mathrm{V}=\frac{4 \pi r^{3}}{3} \\
& \mathrm{~V}=\frac{4 \pi(12)^{3}}{3}=2304 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Two tennis balls

$$
2(2304 \pi)=4608 \pi
$$

Volume of can
$\mathrm{V}=\pi r^{2} \mathrm{~h}$

$$
V=\pi(12)^{2}(48)=6912 \pi
$$

Volume $=\underline{2304 \pi \mathrm{~cm}^{3}}$ (E)
f) Surface Area of a sphere $=4 \pi r^{2}$. If the surface area of a sphere is 144π, then what is its volume?

$$
\begin{array}{ll}
4 \pi r^{2}=144 \pi & V=\frac{4 \pi r^{3}}{3} \\
r^{2}=36 & V=\frac{4 \pi(6)^{3}}{3}=288 \pi \mathrm{~cm}^{3} \\
r=6 &
\end{array}
$$

g) Surface Area of a sphere $=4 \pi r^{2}$. If the surface area of a sphere is 16π, then what is its volume?

$$
\begin{array}{ll}
4 \pi r^{2}=16 \pi & V=\frac{4 \pi r^{3}}{3} \\
r^{2}=4 & \mathrm{~V}=\frac{4 \pi(2)^{3}}{3}=\frac{32 \pi}{3} \mathrm{~cm}^{3}
\end{array}
$$

