Geometry

Unit Three - G.GMD.3-4 Review (HW12)
Name \qquad

For each multiple choice question, please circle your answer.
Date: \qquad Period: \qquad

1. The lateral faces of a prism are the non-base faces.
(T) or F

2. A cube has 8 congruent square faces.
3. A right triangular prism has right triangular lateral sides.
4. If a hexagonal prism has some parallelogram faces that are not rectangles then it is oblique.

(T) or F
5. In all prisms there will always be more lateral faces then base faces.
(T) or F
6. A square pyramid has 5 faces.

7. The lateral edge of a pyramid is equal to the slant height the lateral face.
8. The height of a right square pyramid is always less than the slant height of a lateral face.
9. The ratio of volume between a prism and a pyramid with the same base and height is $3: 1$.

10. If a prism and a pyramid have the same base and height, then the volume of pyramid will always be the greater value.

11. The volume of a cylinder is $\frac{1}{3}$ the amount of a cone with the same radius and height.
12. Match the following terms to the diagram.

Given the square pyramid. Use each value ONLY ONCE.
\qquad Height
A. $\triangle \mathrm{EAD}$
\qquad Lateral Face
B. $\overline{A G}$
C. $\overline{A B}$
D. $\overline{A F}$
E. Square EDCB
14. Properly name the following solids.

Right Hexagonal prism
b)

c)

15. Cavalieri's principle says that these two prisms have equal volume. Explain why that is true?

Same base area and same height

16. A pyramid and a prism have the same base and height. If the volume of the prism is $54 \mathrm{~cm}^{3}$, what is the volume of the pyramid? Leave your answer in exact form.

$$
\text { Pyramid }=\frac{1}{3} \text { prism }=\frac{1}{3}(54)=18 \mathrm{~cm}^{3}
$$

17. Determine the volume of the solids. (Lines that appear perpendicular are perpendicular.)
a)

Volume $=$ \qquad $720 \sqrt{3} \mathrm{~cm}^{3}$ (E)
c)

Volume $=\left[\begin{array}{l}539 \pi \mathrm{~cm}^{3} \\ (E)\end{array}\right.$
e) Given that the solid below is a square pyramid:

$$
\begin{aligned}
& \mathrm{V}=\frac{B h}{3} \\
& \mathrm{~V}=\frac{4^{2}(6)}{3}
\end{aligned}
$$

Volume = \qquad (E)
$\mathrm{V}=\mathrm{Bh}=36 \sqrt{3}(20)$

Volume $=\underline{27 \mathrm{~cm}^{3}}$
d)

Big - small
$\pi(3)^{2}(13)-\pi(2)^{2}(13)$
$117 \pi-52 \pi=65 \pi \approx 204.20$

Volume $=\ldots 204.20 \mathrm{~cm}^{3}(2 \mathrm{dec})$

$\mathrm{V}=\mathrm{Bh}=120.8$ (12)

$a=6.04$
$B=1 / 2(6.04)(40)$
$B=120.8$
Volume $=1449.60 \mathrm{~cm}^{3} \quad(2 \mathrm{dec})$

$$
\mathrm{V}=\frac{\pi(8)^{2}(15)}{3}
$$

Vo
i)

$$
\begin{aligned}
& V=\frac{4 \pi(5)^{3}}{3} \\
& V=\frac{500 \pi}{3}
\end{aligned}
$$

Volume $=523.60 \mathrm{~cm}^{3}$ (2 dec.)
k)

$$
\mathrm{V}=\frac{\pi(9)^{2}(9 \sqrt{3})}{3}
$$

h)

$$
V=\pi(12)^{2}(24)
$$

$$
\text { Volume }=3456 \pi \mathrm{~cm}^{3}
$$

(E)
j)

$$
\mathrm{V}=\frac{2 \pi(3)^{3}}{3}
$$

Volume $=\underline{18 \pi \mathrm{~cm}^{3}}$
(E)
I) Given the following is a square pyramid:

$$
V=\frac{(8)^{2}(4 \sqrt{3})}{3}
$$

$$
\begin{equation*}
\text { Volume }=\frac{\frac{256 \sqrt{3}}{3}}{} \tag{E}
\end{equation*}
$$

18. Describe the solid that is formed by rotating each of these figures about line m and sketch it.
a)

Name/Description

Cone with top removed frustum
b)

Name/Description
donut
torus

