\qquad
Date: \qquad Period: \qquad

1. Determine the arc length.
a) Central Angle of 90°, radius of $\mathbf{8 c m}$
b) Central Angle of 72°, radius of 10 cm
$\mathrm{s}=$ \qquad (E)
$s=$ \qquad (E)
c) Central Angle of $\frac{4 \pi}{5} \mathrm{rad}$., radius of 10 cm
d) Central Angle of $\frac{2 \pi}{3} \mathrm{rad}$., radius of 15 cm
$\mathbf{s}=$ \qquad (E)
$\mathrm{s}=$ \qquad (E)
2. After class Angela says, "I didn't understand how he got the formula for arc length, $s=\Theta r$. Did you understand it?" Explain to Angela where the formula comes from.
3. Determine the arc length of the following.
a)

b)

\qquad (E)
$s=$
(E)
4. Circle G has a radius of 7 cm . After computing an arc on circle G Nancy finds the arc length to be 14 cm . She exclaims, "The central angle must be $\mathbf{2}$ radians." How did she know this?
5. Determine the missing information.
a) $\mathrm{s}=4 \pi \mathrm{~cm}, \mathrm{r}=8 \mathrm{~cm}$
b) $\Theta=0.8$ rad., $s=8 \mathrm{~cm}$
c) $r=4.5 \mathrm{~cm}, \Theta=\frac{\pi}{3} \mathrm{rad}$.,
d) $\Theta=\frac{7 \pi}{4}$ rad., $s=28 \pi \mathrm{~cm}$
$\theta=$ \qquad rad. $r=$ \qquad cm $\mathrm{s}=$ \qquad cm
$r=$ \qquad cm
6. Find the radius of a circle in which a central angle of 5 radians intercepts an arc length of 62.5 feet?
7. Find the measure (in radians) of a central angle that intercepts an arc of length 16 cm in a circle of radius 8 cm .
8. Find the measure (in radians) of a central angle that intercepts an arc of length $24 \pi \mathrm{~cm}$ in a circle of radius 10 cm .
