1. If $\overline{AE} \parallel \overline{CF}$, $\overline{CE} \parallel \overline{DF}$, $m \angle E = 62^{\circ}$, $m \angle A = 41^{\circ}$. Find each requested angle measure and provide a reason for why you know it. (For example, \parallel lines \rightarrow alt. int. angles \cong or supplementary.) a. $$m \angle ECF = \underline{\hspace{1cm}}$$ a. $$m \angle ECF =$$ _____ Reason: _____ b. $$m \angle ECA =$$ b. $$m \angle ECA =$$ _____ Reason: _____ $$c m/FCD =$$ c. $$m \angle FCD =$$ _____ Reason: _____ d. $$m \angle F = \underline{\hspace{1cm}}$$ d. $$m \angle F =$$ _____ Reason: _____ e. $$m \angle D = \underline{\hspace{1cm}}$$ e. $$m \angle D =$$ _____ Reason: _____ f. $$m \angle FDB = \underline{\hspace{1cm}}$$ f. $$m \angle FDB =$$ _____ Reason: _____ 2. Solve for x. Reason for Equation: 3. Solve for x and y. Reason for Equation with x: _____ Reason for y: _____ 4. Draw a diagram of two parallel lines and transversal below. Label one pair of alternate exterior angles on your diagram. 11. Given line $a \parallel line b$, $m \angle 2 = x^{\circ}$, $m \angle 6 = (3x - 60)^{\circ}$. Find the indicated angle measures. a. *m*∠2 = _____ Reason: _____ b. $m \angle 1 =$ _____ Reason: c. $m \angle 3 = ___$ Reason: d. *m*∠5 = _____ Reason: _____ e. *m*∠7 = ____ Reason: _____ f. $m \angle 8 =$ _____ Reason: _____ 12. Using the diagram to the right, identify the name for each angle pair listed. - a. ∠9 and ∠8: _____ - b. ∠9 and ∠4: _____ - c. ∠2 and ∠6: _____ - d. ∠1 and ∠12: _____ - e. ∠6 and ∠11: _____ - f. ∠9 and ∠10: _____ - g. ∠2 and ∠3: _____ 13. Given that line $a \parallel line b$, solve for x and find $m \angle 1$. 14. Given that $line\ a\parallel line\ b$, solve for x and find the measure of both angles labeled. | | | В | |--|-------------------------------------|------------| | 15. Given: $\overline{AB} \cong \overline{CB}; \overline{BM}$ bisects $\angle ABC$ | | \wedge | | Prove: $\triangle AMC$ is isosceles with base \overline{A} | <u> </u> | 1 2 | | Statements | Reasons | / \ | | 1. $\overline{AB} \cong \overline{CB}$ | 1. | M | | 2. | 2. Given | A C | | 3. | 3. | | | 4. | 4. | | | 5. Δ ≅ Δ | 5. | | | 6. | 6. | | | 7. $\triangle AMC$ is isosceles with base \overline{AC} | 7. Definition of isosceles triangle | | | 16. What does CPCTC stand for? | | | | | | | | | | | | 17. Given: C is the midpoint of \overline{AE} ; \overline{AE} b | isects \overline{DB} | _ | | Prove: $\angle A \cong \angle E$ | | A D | | Statements | Reasons | \ <u>\</u> | | | | | | | | ₿ | | | | | | , | Ţ | | | | | | |