Geometry (G.CO.9)

Unit One B -	Proofs with	Parallels #5	(HW29)
--------------	-------------	--------------	--------

Name: _	
Date:	Period:

Your Work:

Corrected Work:

1. Refer to the diagram. Fill in the reason for the statement.	
a. If $m \angle 3 = m \angle 6$, then $m \parallel n$	1
	m
b. If $m \angle 2 = m \angle 6$, then $m \parallel n$	1
	n
c. If $m \angle 2 = m \angle 7$, then $m \parallel n$	$\frac{1}{3}$
	24 5
	6 27
d. If $\angle 3$ and $\angle 5$ are supplementary, then $m \parallel n$	
	×
2. In the figure at right, $m \angle 1 = 3x + 14$, $m \angle 2 = 9x + 14$,	4
and $m \angle 3 = 30x + 14$. Determine whether or not $r \parallel s$. Justify your answer.	1 5
Justify your answer.	
	2
	×43
3. Use the figure to the right find:	^
m∠1 =	2
m∠2 =	
The angle which measures 110° is called an	
	55° 1 110°
	·

4. Given: $\overline{DA} \parallel \overline{BC}$; $\angle A \cong \angle E$			DC	
Prove: $\triangle CBE$ is isosceles with base \overline{BE}				
Statements	Reasons			
	Kedsons	_	A B E	
5. Given: $\overline{DC} \parallel \overline{AE}$; $\angle A \cong \angle DCB$				
Prove: $\overline{DA} \parallel \overline{BC}$				
Statements	Possons			
Statements	Reasons		A B E	
6. Factor: $x^2 - 10x - 24$				
7. Solve: $x^2 - 3x + 2 = 0$				