Name:

Date: ______ Period: _____

Corrected Work:

Your Work:

- 1. Refer to the diagram. Fill in the reason for the statement.
- a. If $m \angle 3 = m \angle 6$, then $m \parallel n$

Alt int \angle 's $\cong \rightarrow \parallel$ lines

b. If $m \angle 2 = m \angle 6$, then $m \parallel n$

Corr \angle 's $\cong \rightarrow \parallel$ lines

c. If $m \angle 2 = m \angle 7$, then $m \parallel n$

Alt ext \angle 's $\cong \rightarrow \|$ lines

d. If $\angle 3$ and $\angle 5$ are supplementary, then $m \parallel n$

s-s int \angle 's supp $\rightarrow \|$ lines

2. In the figure at right, $m \angle 1 = 3x + 14$, $m \angle 2 = 9x + 14$, and $m \angle 3 = 30x + 14$. Determine whether or not $r \parallel s$. Justify your answer.

Not $\| \rightarrow \text{need s-s ext } \angle \text{'s to be} \|$ supp to be $\| \text{not } \cong \text{ to be } \|$

$$3x + 14 = 9x + 14$$

$$3x = 9x$$

$$x = 0$$

3. Use the figure to the right find:

 $m \angle 1 = -70^{\circ}$

$$m \angle 2 = 55^{\circ}$$

The angle which measures 110° is called an $_$ Exterior \angle .

(not super important)

4. Given: $\overline{DA} \parallel \overline{BC}$; $\angle A \cong \angle E$ Prove: $\triangle CBE$ is isosceles with ba	se \overline{BE}	
Statements	Reasons	A B E
1. <i>DA</i> ∥ <i>BC</i>	1. Given	
2. ∠ <i>A</i> ≅ ∠ <i>CBE</i>	2. ∥ lines→corr ∠'s ≅	
3. ∠ <i>A</i> ≅ ∠ <i>E</i>	3. Given	
4. ∠ <i>CBE</i> ≅ ∠ <i>E</i>	4. Transitive prop (2,3)	
5. ΔCBE is isosceles	5. def of isosceles Δ	
with base \overline{BE}		
5. Given: $\overline{DC} \parallel \overline{AE}$; $\angle A \cong \angle DCB$ Prove: $\overline{DA} \parallel \overline{BC}$		
Statements	Reasons	$\underline{}$
1. <i>DC</i> ∥ <i>AE</i>	1. Given	A B E
2. ∠ <i>DCB</i> ≅ ∠ <i>CBE</i>	2. ∥ lines→alt int ∠'s ≅	
3. ∠ <i>A</i> ≅ ∠ <i>DCB</i>	3. Given	
4. ∠ <i>A</i> ≅ ∠ <i>CBE</i>	4. Transitive prop (2,3)	
5. $\overline{DA} \parallel \overline{BC}$	5. corr \angle 's $\cong \rightarrow \ $ lines	
6. Factor: $x^2 - 10x - 24$		<u> </u>
(x - 12)(x + 2)		
7. Solve: $x^2 - 3x + 2 = 0$		
(x-2)(x-1)=0		
x = 2, x = 1		