Geometry (G.CO.11)

Unit One B: Proving Quadrilaterals are Parallelograms #2 (HW42)

- 1. Fill in the blanks below using what you learned today about proving that a quadrilateral is a parallelogram.
 - a. Both _____ of _____ sides _____ \rightarrow Parallelogram
 - b. Both _____ of _____ sides _____ \rightarrow Parallelogram
 - c. Both _____ of _____ angles _____ \rightarrow Parallelogram
 - d. Diagonals _____ each other \rightarrow Parallelogram
 - e. One pair of ______ sides _____ and _____ → Parallelogram
- Is MATH a parallelogram if the vertices of the quadrilateral are M(-5, -3), A(0, -3), T(6, 2), H(1, 2)? If yes, justify your answer with both mathematical evidence (think slopes and/or distances) and a reason from #1.

						-	-					
	2											
	N											/
······································												
							/					

Name: _____ Period: Date: _____ 3. Given: $\triangle ABD \cong \triangle CDB$ Prove: ABCD is a parallelogram Hint: There are multiple ways to do this so just think about CPCTC. Statements Reasons

Statements	Reasons