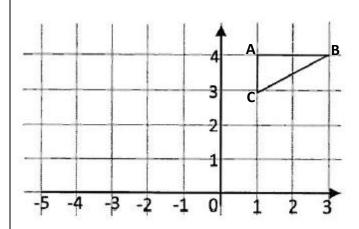

1.

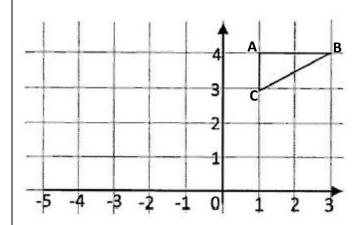

The diagram shows a quadrilateral ABDC.


ABDC is reflected over the line x=0. Draw and label A'B'D'C'.

A'B'D'C' is mapped onto A"B"D"C" by a reflection over the line x=4. Draw and label A"B"D"C".

Describe fully the <u>single</u> transformation which maps ABDC to A"B"D"C". Can similar transformations on this shape be created in the same way?

2.

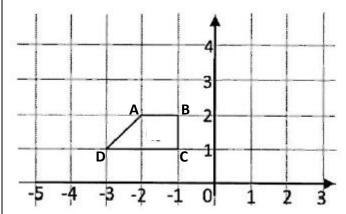

The diagram shows $\triangle ABC$.

Rotate ΔABC 270° counterclockwise about the origin to $\Delta A'B'C'$. Draw and label $\Delta A'B'C'$.

Reflect $\Delta A'B'C'$ over the line y = 0 to $\Delta A''B''C''$. Draw and label $\Delta A''B''C''$.

Describe fully the <u>single</u> transformation which maps ΔABC to $\Delta A"B"C"$. Can similar transformations on this shape be created in the same way?

3.


The diagram shows ΔABC .

 $\triangle ABC$ is reflected across the line y = x. Draw and label $\triangle A'B'C'$.

Then, $\Delta A'B'C'$ is reflected over the line y = 0. Draw and label $\Delta A''B''C''$.

Describe fully the <u>single</u> transformation which maps ΔABC to $\Delta A''B''C''$. Can similar transformations on this shape be created in the same way?

4.

The diagram shows quadrilateral ABCD.

ABCD goes through a rotation of 90° counterclockwise about (0, 0). Draw and label the image.

A'B'C'D' is mapped onto A"B"C"D" by a reflection over the line x = 0. Draw and label A"B"C"D".

Describe fully the <u>single</u> transformation which maps ABCD to A"B"C"D". Can similar transformations on this shape be created in the same way?