Name: \qquad
Date: \qquad Period: \qquad

1. Why does the relationship $P(A)+P(B)=P(A$ or $B)$ work only for mutually exclusive events?
2. Timothy is asked to determine the P (iPod or iPhone). He adds the column $\mathrm{P}(\mathrm{iPad})=30 / 72$ to the row P (iPhone) $=55 / 72$ and gets $85 / 72$. Because this number exceeds 1 he knows that he has done something wrong. What did he do wrong? What should the correct answer be?

	iPad	Not iPad	Total
iPhone	25	$\mathbf{3 0}$	$\mathbf{5 5}$
Not	$\mathbf{5}$	$\mathbf{1 2}$	$\mathbf{1 7}$
iPhone	$\mathbf{4}$		
Total	$\mathbf{3 0}$	$\mathbf{4 2}$	$\mathbf{7 2}$

3. Draw and completely label a Venn Diagram for each scenario. Determine the probability requested.
a) $P(A)=0.45 \quad P(B)=0.56$
b) $P(A$ or $B)=0.8$
$P(A$ and $B)=0.2$
$P(A)=0.6$
$P(B)=0.5$

4. Given that events A and B are independent, determine the probabilities. Draw and label a Venn diagram.

$$
P(A)=0.3 \quad P(B)=0.7
$$

$P(A$ and $B)=$ \qquad
$P(A$ or $B)=$ \qquad
\square
5. Use the two way frequency table to determine the probabilities.
a) $P($ Red or Green $)=$ \qquad b) $P($ Yellow $)=$
c) $P($ Male or Green $)=$
d) $P($ Male $)=$ \qquad

e) $P($ Black $)=$ \qquad
6. A 12 sided dice is rolled. Complete the sample spaces using set notation. Shade the required region in each Venn diagram and determine the requested probability.

Set $A=$ Factors of $6=$ \qquad
$P(A)=$ \qquad
Set $\mathrm{C}=$ Odd Numbers $=$ \qquad $P(C)=$ \qquad
a) Shade $P(A$ or $B)$
$P(A$ or $B)=$ \qquad

Set $\mathrm{B}=$ \#'s greater than $9=$ \qquad
$P(B)=$ \qquad
Set $D=\{4,8\}$
$P(D)=$ \qquad
b) Shade $P(C$ and $D)$
$P(C$ and $D)=$ \qquad

7. Given a jar of cookies with 5 chocolate chip, 3 oatmeal, and 2 peanut butter cookies in it, determine the following probabilities.
a) Getting an oatmeal cookie and then a chocolate chip cookie without replacement.
b) Getting two chocolate chip cookies without replacement.
c) Getting a peanut butter cookie or an oatmeal cookie.
\qquad
$\mathrm{P}(\mathrm{O}$ and CC$)=$
$P(C C$ and $C C)=$ \qquad
$\mathrm{P}(\mathrm{PB}$ or O$)=$ \qquad
8. Given two bags of marbles, bag \#1 with 2 green, 3 red and 7 orange, and bag \#2 with 5 green, 1 red and 4 orange. Determine the following probabilities.
a) Getting an orange from bag \#1 and then getting a green from bag \#2.
b) Getting a red from bag \#1 and then getting a red from bag \#1 without replacement.
c) Getting a green from bag \#1 and then getting a green from bag \#2.
$P(R 1$ and $R 1)=$ \qquad $P(G 1$ and $G 2)=$ \qquad
$P(01$ and G 2$)=$ \qquad
9. Using the marble bags in question \#8, what would P(Green and Green) be if the person picked from bag \#1 and then placed that marble into bag \#2 and then picked from bag \#2?
10. Given a standard deck of cards. Determine the probabilities.
a) Getting a red card and then a red card without replacement.
b) Getting a face card and then a 5 without replacement.
$\mathrm{P}($ Red and Red $)=$ \qquad
c) Getting a 2 and then a 2 without replacement.
$P(2$ and 2$)=$ \qquad
e) Getting a red card or a black king.
$P(B$ Face and B Face $)=$ \qquad
f) Getting a face card or a diamond.
$\mathrm{P}($ red or black king $)=$ \qquad $P($ face card or diamond $)=$ \qquad
11. Complete the tree diagram by writing in the probabilities for each branch and then calculating the probabilities for each possible outcome.

Bag \#1 has 2 white and 3 red marbles and bag \#2 has 4 purple, 2 green and 1 orange. Pick from bag \#1 keep it and then pick from bag \#2.

