Geometry

Unit Two: Post-Assessment Simplifying Radicals Practice (HW8)
Rewrite the following radicals in the most simplified form.

Ex. $\sqrt{96}$

Option 1: Use the largest perfect square.
$\sqrt{96}=\sqrt{16 \cdot 6}=4 \sqrt{6}$

Rewrite 80 as a product of the largest possible perfect square and another number.		Square root the perfect square to simplify.

Option 2: Use a factor tree.

1. Circle pairs of factors.

$\wedge^{6} / 1$
2. One of part of each pair moves outside radical and multiplies.

3. Uncircled factors return to radical and multiply.

$$
2 \cdot 2 \sqrt{3 \cdot 2}=4 \sqrt{6}
$$

Geometry

Unit Two: Post-Assessment Simplifying Radicals Practice (HW8)
a) $\sqrt{12}$
c) $\sqrt{18}$

Name: \qquad
Date: \qquad Period: \qquad
b) $\sqrt{40}$
d) $\sqrt{75}$

Name: \qquad
Date: \qquad Period: \qquad

Rewrite the following radicals in the most simplified form.

Ex. $\sqrt{96}$

Option 1: Use the largest perfect square.
$\sqrt{96}=\sqrt{16 \cdot 6}=4 \sqrt{6}$

Option 2: Use a factor tree.

1. Circle pairs of factors.

2. One of part of each pair moves outside radical and multiplies.

3

3. Uncircled factors return to radical and multiply.

$$
2 \cdot 2 \sqrt{3 \cdot 2}=4 \sqrt{6}
$$

a) $\sqrt{12}$
b) $\sqrt{40}$
c) $\sqrt{18}$
d) $\sqrt{75}$
e) $\sqrt{48}$
f) $\sqrt{128}$
g) $\sqrt{24}$
h) $\sqrt{98}$
i) $\sqrt{72}$
j) $\sqrt{540}$
e) $\sqrt{48}$
f) $\sqrt{128}$
g) $\sqrt{24}$
h) $\sqrt{98}$
i) $\sqrt{72}$
j) $\sqrt{540}$

