Name: \qquad
Unit Six: Probability - Review \#2 (HW8)
Date: \qquad Period: \qquad

1. Jane is given the following probability problem and her work is displayed. She has done something wrong. What did she do wrong and why is it wrong?

Problem: A bag of marbles has 3 green, 2 blue and 5 red marble. What is the probability of getting a red and then a green marble without replacement?
$P(R$ and $G)=\left(\frac{5}{10}\right)\left(\frac{3}{10}\right)=\frac{15}{100}$

2. Draw and completely label a Venn Diagram for each

 scenario. Determine the probability requested.$P(A)=0.3 \quad P(B)=0.15$
Events A and B are mutually exclusive.

3. Given that events A and B are independent, Determine the probabilities. Draw and label a Venn diagram.
$P(A$ and $B)=0.4 \quad P(B)=0.5$
$P(A)=$ \qquad
\qquad
$\mathrm{P}(\mathrm{A}$ or B$)=$

4. Shade the required region in each Venn diagram and determine the requested probability.
a) Shade P(C or not B)
$P(C$ or not $B)=$

b) Shade $P(A$ and $D)$
$P(A$ and $D)=$ \qquad

5. A bag of marbles has 15 red and 5 green. Two picks are made from the same bag without replacement. Draw your own tree diagram and label each branch with the probabilities.
6. Given two bags of marbles, bag \#1 with 2 green, 3 red and 7 orange, and bag \#2 with 5 green, 1 red and 4 orange. Determine the following probabilities.
a) Getting a red from bag \#1 and then getting an orange from bag \#1 with replacement.
b) Getting a red from bag \#2 and then getting an orange from bag \#2 with replacement.
c) Getting a green or a red from bag \#2.
$P(R 2$ and $O 2)=$
$P(G 2$ or $R 2)=$
\qquad

7. Given a standard deck of cards. Determine the probabilities.

a) Getting a numerical card less than 5 and then a king with replacement.
b) Getting a 2 and then a 2 with replacement.
c) Getting a spade or a 5 .
$P(\#<5$ and King $)=$ \qquad
d) Getting a heart or a club.
$P(2$ and 2$)=$ \qquad $P($ spade or 5$)=$ \qquad
e) Getting a red 2 followed by a black card without replacement.
f) Getting a face card followed by an second face card with replacement.
$P($ heart or club $)=$ \qquad
$\mathrm{P}($ red 2 and black $)=$ \qquad
$\mathrm{P}($ face card and face card $)=$ \qquad
8. A Jar of cookies have 12 chocolate chip cookies, 13 peanut butter cookies, and 5 walnut cookies. Beside the jar is a cookie sheet of $\mathbf{2 0}$ chocolate chip cookies.
Some unique replacement rules exist:
-- if you pick a chocolate chip cookie from the jar you eat it and then replace it with 2 chocolate chip cookies from the cookie sheet.
-- if you pick a peanut butter cookie you eat it
-- if you pick a walnut cookie, you put it back.
a) $P(C C$ and then $W)=$ \qquad b) $P(C C$ and $C C)=$
c) $P(W$ and then $W)=$ \qquad
d) $P(P B$ and then $C C)=$ \qquad
e) Which has a greater chance of happening? $P(P B$ and then a $W)$ or $P(W$ and then a $C C)$?

