\qquad
Unit 1B: Rigid Motions \& Congruent Polygons (IC1)
Date: \qquad Period: \qquad
Objective: Understand what rigid motion is and determine whether a transformation is a rigid motion or not.
Definition: Rigid Motion is a transformation that 1.
Preserves distances
2.
\qquad
Preserves angle measurements

Definition: Congruent - Objects which are the result of a rigid motion transformation * Same shape, same size, same angles, same distances

Given $A B C D E \cong H G F J K$:
(a) What rigid motion or motions maps ABCDE to HGFJI?

Reflection

(b) What statements can we make as a result of the congruence?

$$
\angle A \cong \angle \mathrm{H}, \angle B \cong \angle \mathrm{G}, \angle C \cong \angle \mathrm{~F}, \angle D \cong \angle \mathrm{~J}, \angle E \cong \angle \mathrm{~K}
$$

$$
\overline{A B} \cong \overline{H G}, \overline{B C} \cong \overline{G F}, \overline{C D} \cong \overline{F J}, \overline{D E} \cong \overline{J K}, \overline{E A} \cong \overline{K H}
$$

Objective: Understand if polygons are congruent, how their corresponding parts match up and use that knowledge to solve for missing information.

Key Ideas/Summary: There are two ways to prove that polygons are congruent:
(a) Mlustrate the rigid motion that maps one to the other
(b) Measure $\underline{\text { ALL }}$ sides and \angle 's \& compare. Find corrparts that are \cong
Notation fo(Measurement Angles \& Sides): "EQUALS"
Lengths:

> AB (no segment bar)
> $\mathrm{m} \angle A$ (add " m " in front of name)

Examples:

1) $\mathrm{AB}=6 \mathrm{~cm}$ or $\mathrm{AB}=\mathrm{DE}$
2) $\mathrm{m} \angle A=60^{\circ}$ or $\mathrm{m} \angle A=\mathrm{m} \angle B$

Corresponding Parts:

Pairs of sides or angles, one from each polygon, which are congruent (\cong)

Notation for Objects (Angles \& Sides): "CONGRUENT"
Same size AND shape

Examples:

1) $\overline{A B} \cong \overline{C D}$
2) $\angle A \cong \angle B$
***Never use
numbers or $A B$
or $m \angle A$ with
\cong symbol $^{* * *}$

Note: When studying geometry, drawings are not always done to scale. This means:

1) Objects may be congruent when they do not look like it - evidence is measurements given or congruent features marked
2) Objects may NOT be congruent when they look like they are - evidence is missing that would be needed in order to confirm congruence.

You should NEVER have to measure angles or lengths with rulers or protractors in these types of problems. You should rely only on the information provided or information that you can solve for using properties of the shapes or other math knowledge (algebra, etc.).

Examples:

1. Are each of the pairs of polygons below congruent? Why or why not? If they are, provide a congruence statement.
a.

b.

YES NO Why? 3 pairs \cong sides, 3 pairs $\cong ~ L^{\prime} S$ \cong Statement: $\quad \triangle P R Q \cong \triangle C D B$
YES NO Why? Sides not $\cong(E F \neq V W)$ \cong Statement: $\quad \mathrm{N} / \mathrm{A}$
*Note: the $3 \angle$'s in a Δ add to 180°
2. Given $\triangle A F H \cong \triangle Q R N$, fill in the missing information requested below.
a. $m \angle F=75^{\circ}$
e. $Q R=13 \mathrm{in}$
b. $m \angle Q=40^{\circ}$
f. $R N=$ 9in
c. $m \angle R=-75^{\circ}$
g. $\overline{A H} \cong \overline{Q N}$
d. $m \angle N=$ \qquad ค. $\overline{N R} \cong \ldots$
e. $\angle F \cong$ \qquad
i. $\mathrm{AH}=\mathrm{QN}$

3. Given $A B C D \cong P Q R S$:
a. Solve for $x . \quad m \angle A=m \angle P$

$$
\begin{aligned}
& 2 x+4=100 \\
& 2 x=96
\end{aligned} \quad D C=S R
$$

b. Solve for $y . \quad x=48$

$$
\begin{aligned}
& 3 y-3=12 \\
& 3 y=15 \\
& y=5
\end{aligned}
$$

Circle the appropriate symbol and fill in the rest of the statement using the diagram above. Give the most specific answer possible:
c. $A D \cong \mathrm{PS}$
d. $\angle A \cong \angle P$
e. $m \angle A \xlongequal{\cong} 100^{\circ}$
f. $\overline{C D} \xlongequal{=} \overline{R S}$
4. Given $\triangle A B C \cong \triangle D E F$: Solve for x and y .
$m \angle D=m \angle A$
$E F=B C$
$2 y-5=65$
$2 x+y=90.6$
$2 y=70$
$2 x+35=90.6$
$y=35$
$2 x=55.6$
$x=27.8$

