Geometry
Unit Five: Angles \& Segments in Circles Graphic Organizer

Name: \qquad
Date: \qquad Period: \qquad
Location of Vertex

Secant-tangent

Location of Segment Intersection	Diagram	Method for Finding Segment Measures
INSIDE CIRCLE		* The product of the segments of the chords are equal $\begin{gathered} (\mathrm{AE})(\mathrm{DE})=(\mathrm{CE})(\mathrm{BE}) \\ \mathrm{EX})(10)(12)=16 \mathrm{x} \\ 120=16 \mathrm{x} \\ \mathrm{x}=7.5 \end{gathered}$
OUTSIDE CIRCLE		* The product of whole segments connecting the exterior angle to the circle and the exterior segment doing the same are equal. $(A B)(A C)=(A E)(A D)$ $\text { EX) } \begin{gathered} 5(x+5)=7(13) \\ 5 x+25=91 \\ x=13.2 \end{gathered}$
OUTSIDE CIRCLE		$\begin{aligned} & (\mathrm{AC})(\mathrm{AD})=(\mathrm{AB})(\mathrm{AB}) \\ & (\mathrm{AC})(\mathrm{AD})=(\mathrm{AB})^{2} \end{aligned}$ $\text { EX) } \begin{aligned} & 14(14+16)=x^{*} x \\ & 420=x^{2} \\ & x=\sqrt{420}=2 \sqrt{105} \approx 20.5 \end{aligned}$
OUTSIDE CIRCLE		$\text { EX) } \begin{aligned} (12)(12) & =x(20) \\ 20 x & =144 \\ x & =7.2 \\ y & =20-7.2 \\ y & =12.8 \end{aligned}$

