Name: \qquad
Unit Five: Circles - Segment Relationships (IC11)
Date: \qquad Period: \qquad
Segments Intersecting Inside a Circle:
The product of the segments of one chord equals the product of segments of the $2^{\text {nd }}$ chord.

* All lengths should be from the vertex of the interior angle to the circle.

Segments Intersecting Outside a Circle:
The product of one whole segment and its exterior portion equals the product of the $2^{\text {nd }}$ whole segment and its exterior portion.

* All lengths should be from the vertex of the exterior angle to the circle.

$$
\begin{aligned}
& (\mathrm{AC})(\mathrm{AB})=(\mathrm{AD})(\mathrm{AD}) \\
& (\mathrm{AB})(\mathrm{AC})=(\mathrm{AD})^{2}
\end{aligned}
$$

1. Determine the value of \mathbf{x} in each circle below.

a)

$$
(3)(4)=2 x
$$

b)

$(5)(5+9)=6(6+x)$
$70=36+6 x$
$34=6 x$

$$
12=2 x
$$

$$
x=6 \mathrm{~cm}
$$

$$
x=\underline{\frac{17}{3} \text { or } 5 \frac{2}{3} \mathrm{~cm}}
$$

2. Determine the value of x.

a)

$$
(8)(3)=7.5 x
$$

$$
24=7.5 x
$$

$$
x=3.2 \mathrm{~cm}
$$

b)

$(12)(15)=20 x$
$180=20 x$

$$
x=9 \mathrm{~cm}
$$

c)

$(6)(21)=18 x$
$126=18 x$
$x=7 \mathrm{~cm}$
3. Determine the value of \mathbf{x}. (Lines that appear to be tangent are tangent.)
a)

$(5)(7+5)=6(6+x)$ $60=6 x+36$
$6 x=24$

$$
x=4 \mathrm{~cm}
$$

4. Solve for \mathbf{x} and \mathbf{y}.

$$
(x)(x+30)=(20)(20)
$$

$$
x^{2}+30 x=400
$$

$$
x^{2}+30 x-400=0
$$

$$
(x+40)(x-10)=0
$$

$$
x=-\nless x \text { and } x=10
$$

$$
x=10 \mathrm{~cm}
$$

b)

$(x)(x+23)=6(6+12)$
$x^{2}+23 x=108$
$x^{2}+23 x-108=0$
$(x+27)(x-4)=0$
$x=-$ 次 and $x=4$

$$
x=4 \mathrm{~cm}
$$

$$
(8)(y+8)=(20)(20)
$$

$$
8 y+64=400
$$

$$
8 y=336
$$

$$
y=42 \mathrm{~cm}
$$

c)

$(x)(x+10)=(12)(12)$
$x^{2}+10 x=144$
$x^{2}+10 x-144=0$
$(x+18)(x-8)=0$
$x=-2$ and $x=8$

$$
x=8 \mathrm{~cm}
$$

