Geometry (G.C.5)
Unit Five: Radian Measure (IC15)

We use radians b / c in calculus it is easier to take derivatives and
limits limians

Name: \qquad
Date: \qquad Period: \qquad

Measuring Angles: Degrees versus Radians

Degrees: 1 rotation $=360^{\circ}$
≈ 360 days to orbit the sun
Babylonians counted by 60 instead of 10, so 360 was a multiple.

Radians:
An angle that intersects an arc with a length equal to the radius of the circle.

Remembering that the angle above is exactly 1 radian - estimate the angles values below in both radians and degrees:

How many radii exactly fit around the entire circumference of a circle? (Hint: The circumference formula should help you know this value) $\quad 2 \pi \quad C=2 \pi(r)$ where $r=$ radius of circle

How does that value help you to know EXACTLY how many radians there are in one full circle?

$$
360^{\circ}=\ldots 2 \pi \quad \text { radians }
$$

$$
180^{\circ}=\pi \text { radians }
$$

180° is exactly $1 / 2$ of 360°.
How many radians would form the same angle?
\qquad radians

$$
\frac{2 \pi}{2}
$$

270° is exactly $3 / 4$ of 360°.
How many radians would form the same angle?
\qquad radians $\frac{2 \pi}{1} * \frac{3}{4}=\frac{6 \pi}{4}$

90° is exactly $1 / 4$ of 360°.
How many radians would form the same angle?

120° is exactly $1 / 3$ of 360°.
How many radians would form the same angle?
$\frac{2 \pi}{3}$ radians

To convert from degree measures to radian measure:	To convert from radian measure to degree measure:
(deg. measure) $\left(\frac{\pi}{180}\right)=$ radian measure	(radian measure) $\left(\frac{180}{\pi}\right)=$ deg measure

Convert the following degree measurements to radian meazsures.
a) $270^{\circ}=$ \qquad
b) $135^{\circ}=$
($\underline{7 \pi}$
$(270)\left(\frac{\pi}{180}\right)=\frac{270 \pi}{180}$
$(135)\left(\frac{\pi}{180}\right)=\frac{135 \pi}{180}$
(210) $\left(\frac{\pi}{180}\right)=\frac{210 \pi}{180}$
d) $240^{\circ}=\frac{\frac{4 \pi}{3}}{}$
e) $150^{\circ}=\underline{\frac{5 \pi}{6}}$
f) $315^{\circ}=$

$$
(240)\left(\frac{\pi}{180}\right)=\frac{240 \pi}{180}
$$

$$
(150)\left(\frac{\pi}{180}\right)=\frac{150 \pi}{180}
$$

$$
(315)\left(\frac{\pi}{180}\right)=\frac{315 \pi}{180}
$$

Convert the following radian measurements to degree measures.
a) $\frac{11 \pi}{12}=\underline{165^{\circ}}$
b) $-\frac{3 \pi}{5}=-108^{\circ}$
c) $4=\frac{\frac{720}{\pi}^{\circ} \approx 229.18^{\circ} .}{}$
$\left(\frac{11 \pi}{12}\right)\left(\frac{180}{\pi}\right)=165^{\circ}$
$\left(\frac{-3 \pi}{5}\right)\left(\frac{180}{\pi}\right)=-108^{\circ}$
$(4)\left(\frac{180}{\pi}\right)=\frac{720}{\pi} \circ$
d) $\frac{\pi}{3}=$ \qquad
e) $\frac{2 \pi}{9}=\underline{40^{\circ}}$

$$
\text { f) }-\frac{11 \pi}{10}=-198^{\circ}
$$

$$
\left(\frac{\pi}{3}\right)\left(\frac{180}{\pi}\right)=60^{\circ}
$$

$$
\left(\frac{2 \pi}{9}\right)\left(\frac{180}{\pi}\right)=40^{\circ}
$$

$$
\left(\frac{-11 \pi}{10}\right)\left(\frac{180}{\pi}\right)=-198^{\circ}
$$

