

Remembering that the angle above is exactly 1 radian - estimate the angles values below in both radians and degrees:

How many radii exactly fit around the entire circumference of a circle? (Hint: The circumference formula should help you know this value) 2π C = 2π (r) where r = radius of circle

How does that value help you to know EXACTLY how many radians there are in one full circle?

To convert from degree measures to radian measure:	To convert from radian measure to degree measure:
(deg. measure)($\frac{\pi}{180}$) = radian measure	(radian measure) $(\frac{180}{\pi}) = \text{deg measure}$

Convert the following degree measurements to radian measures. $\frac{7\pi}{3\pi}$		
a) 270° =	b) 135° =4	c) 210° = <u>6</u>
$(270)(\frac{\pi}{180}) = \frac{270\pi}{180}$	$(135)(\frac{\pi}{180}) = \frac{135\pi}{180}$	$(210)(\frac{\pi}{180}) = \frac{210\pi}{180}$
d) 240° = $\frac{4\pi}{3}$	e) $150^{\circ} = \frac{5\pi}{6}$	f) 315° = $\frac{7\pi}{4}$
$(240)(\frac{\pi}{180}) = \frac{240\pi}{180}$	$(150)(\frac{\pi}{180}) = \frac{150\pi}{180}$	$(315)(\frac{\pi}{180}) = \frac{315\pi}{180}$

Convert the following radian measurements to degree measures.

a)
$$\frac{11\pi}{12} = \underline{-165^{\circ}}$$

($\frac{11\pi}{12}$)($\frac{180}{\pi}$) = 165°
($\frac{-3\pi}{5}$)($\frac{180}{\pi}$) = -108°
(4)($\frac{180}{\pi}$) = $\frac{720}{\pi}^{\circ}$
(4)($\frac{180}{\pi}$) = $\frac{720}{\pi}^{\circ}$
(4)($\frac{180}{\pi}$) = $\frac{720}{\pi}^{\circ}$
(4)($\frac{180}{\pi}$) = $\frac{720}{\pi}^{\circ}$

$$(\frac{\pi}{3})(\frac{180}{\pi}) = 60^{\circ}$$

$$e) \frac{2\pi}{9} = \frac{40^{\circ}}{-40^{\circ}}$$

$$f) -\frac{11\pi}{10} = \frac{-190}{-100}$$

$$(\frac{2\pi}{9})(\frac{180}{\pi}) = 40^{\circ}$$

$$(\frac{-11\pi}{10})(\frac{180}{\pi}) = -198^{\circ}$$