Geometry (G.C.5)	Name:	
Unit Five: Arc Length (IC16)	Date:	Period:

 $S = \frac{\pi}{4} (12) = \frac{12\pi}{4}$

 $s = 3\pi$ cm (E)

30 0 (a) 180π

$$S = \frac{360}{360} \cdot 2\pi (3) = \frac{100\pi}{360}$$

 $s = \frac{\pi}{2} cm$ (E)

2. Determine the arc length of the following.

3. Determine the missing information.

a) s = 10 π cm, r = 8 cm b) $\Theta = \frac{2\pi}{5}$ rad., s = 5 π cm c) r = 8 cm, $\Theta = \frac{\pi}{2}$ rad. d) $\Theta = \frac{5\pi}{6}$ rad., s = 10 π cm $S = \Theta r$ S = Θr $S = \Theta r$ $S = \Theta r$ $10\pi = \frac{5\pi}{6} \cdot \mathbf{r}$ $6 \cdot 10\pi = \frac{5\pi}{6} \cdot \mathbf{r} \cdot \mathbf{6}$ $S = \frac{\pi}{2}(8) = \frac{8\pi}{2}$ $10\pi = \Theta(8) \qquad 5\pi = \frac{2\pi}{5} \cdot r$ $\frac{10\pi}{8} = \Theta$ $25\pi = 2\pi r$ $60\pi = 5\pi r$ 5π $\Theta = 4$ rad. r = 12.5 cm $s = 4\pi$ cm r = 12 cm

What's the difference between arc length and arc measure?

Arc length = <u>distance</u> around portion of a circle Arc measure = <u>degree</u> measure of arc as a portion of 360°

4. Determine the information below if the radius of the circle is 5cm.

a)
$$m\widehat{CB} = 50^{\circ}$$

b) $m\widehat{BA} = 100^{\circ}$
c) $m\widehat{AD} = 110^{\circ}$
d) $\ell\widehat{CB} = \frac{50}{360} 2\pi(5) = \frac{500\pi}{360} = \frac{25\pi}{18} \text{ cm}$
e) $\ell\widehat{BA} = \frac{100}{360} 2\pi(5) = \frac{1000\pi}{360} = \frac{25\pi}{9} \text{ cm}$
f) $\ell\widehat{AD} = \frac{110}{360} 2\pi(5) = \frac{1100\pi}{360} = \frac{55\pi}{18} \text{ cm}$

5. If the radius of the pulley is 12 cm and the rotation of the pulley was $\frac{7\pi}{6}$ radians, how many cm will the weight rise?

Arc length = how much is wrapped around = how much weight rises

$$S = \frac{7\pi}{6}(12) = \frac{84\pi}{6} = 14 \ \pi \ \text{cm}$$

6. The rotation of the smaller gear with radius 10 cm was $\frac{11\pi}{6}$ radians. What was the angle of rotation (radians) of the larger gear with a radius 20 cm?

Arc length should match

Small:
$$\frac{11\pi}{6}(10) = \frac{110\pi}{6} = \frac{55\pi}{3}\pi$$
 cm

Big:
$$\frac{55\pi}{3} = \Theta(20)$$

 $\Theta = \frac{11\pi}{12} rad$