\qquad
Unit Five: Arc Length (IC16)
Date: \qquad Period: \qquad

Arc Length:

The distance associated with a portion of a circle's circumference; can be abbreviated as " S " or as $\ell \widehat{A B}$

* Units are the same as the radius units*

$S=\Theta r$
Where Θ is the central angle measure and r is the circle's radius.

1. Determine the arc length.
a) Central Angle of $\mathbf{3 0 ^ { \circ }}$, radius of $\mathbf{3} \mathbf{~ c m}$

$$
S=\frac{30}{360} \cdot 2 \pi(3)=\frac{180 \pi}{360}
$$

$$
\begin{equation*}
\mathrm{s}=\frac{\pi}{2} \mathrm{~cm} \tag{E}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{s}=3 \pi \mathrm{~cm} \tag{E}
\end{equation*}
$$

2. Determine the arc length of the following.
a)

$s=$ \qquad $8 \pi \mathrm{~cm}$
(E)
b)

$S=\frac{3 \pi}{2}(4)=\frac{12 \pi}{2}$
$\mathbf{s}=6 \pi \mathrm{~cm}$
3. Determine the missing information.
a) $s=10 \pi \mathrm{~cm}, r=8 \mathrm{~cm}$
b) $\Theta=\frac{2 \pi}{5}$ rad., $s=5 \pi \mathrm{~cm}$
c) $r=8 \mathrm{~cm}, \theta=\frac{\pi}{2} \mathrm{rad}$.
d) $\Theta=\frac{5 \pi}{6}$ rad., $s=10 \pi \mathrm{~cm}$

$$
\begin{aligned}
& S=\Theta r \\
& 10 \pi=\Theta(8) \\
& \frac{10 \pi}{8}=\Theta
\end{aligned}
$$

$$
\mathrm{S}=\Theta \mathrm{r}
$$

$$
S=\Theta r
$$

$$
\mathrm{S}=\Theta \mathrm{r}
$$

$$
5 \pi=\frac{2 \pi}{5} \cdot r
$$

$$
25 \pi=2 \pi r
$$

$$
\mathrm{S}=\frac{\pi}{2}(8)=\frac{8 \pi}{2}
$$ rad. \qquad $r=12.5 \mathrm{~cm}$

$$
\mathrm{s}=\quad 4 \pi \quad \mathrm{~cm}
$$

$$
r=12
$$ cm

What's the difference between arc length and arc measure?
Arc length = distance around portion of a circle
Arc measure $=\underline{\text { degree }}$ measure of arc as a portion of 360°
4. Determine the information below if the radius of the circle is 5 cm .
a) $m \widehat{C B}=50^{\circ}$
d) $\ell \widehat{C B}=\frac{50}{360} 2 \pi(5)=\frac{500 \pi}{360}=\frac{25 \pi}{18} \mathrm{~cm}$
b) $m \widehat{B A}=100^{\circ}$
e) $\ell \widehat{B A}=\frac{100}{360} 2 \pi(5)=\frac{1000 \pi}{360}=\frac{25 \pi^{100^{\circ}}}{9} \mathrm{c}$
f) $\ell \widehat{A D}=\frac{110}{360} 2 \pi(5)=\frac{1100 \pi}{360}=\frac{55 \pi}{18} \mathrm{~cm}$
c) $m \widehat{A D}=110^{\circ}$

5. If the radius of the pulley is 12 cm and the rotation of the pulley was $\frac{7 \pi}{6}$ radians, how many cm will the weight rise?

Arc length = how much is wrapped around = how much weight rises

$$
S=\frac{7 \pi}{6}(12)=\frac{84 \pi}{6}=14 \pi \mathrm{~cm}
$$

6. The rotation of the smaller gear with radius 10 cm was $\frac{11 \pi}{6}$ radians. What was the angle of rotation (radians) of the larger gear with a radius $\mathbf{2 0} \mathbf{c m}$?

Arc length should match

Small: $\quad \frac{11 \pi}{6}(10)=\frac{110 \pi}{6}=\frac{55 \pi}{3} \pi \mathrm{~cm}$

$$
\begin{aligned}
& \text { Big: } \frac{55 \pi}{3}=\Theta(20) \\
& \Theta=\frac{11 \pi}{12} \mathrm{rad}
\end{aligned}
$$

