Geometry (G.co.8)
Unit 1B - Two-Column Proofs \#6 \& Angle Types (IC19)

Name: \qquad
Date: \qquad Period: \qquad
Complete the following proofs.

1) GIVEN:
$\overline{B C} \cong \overline{D C}$ \& $\overline{A C} \cong \overline{E C}$
PROVE:
$\angle \mathrm{A} \cong \angle \mathrm{E}$
STATEMENT
2) $\overline{B C} \cong \overline{D C}$
3) $\overline{A C} \cong \overline{E C}$
4) $\angle B C A \cong \angle E C D$
5) $\triangle A B C \cong \triangle E D C$
6) $\angle A \cong \angle E$

REASON

1) Given
2) Given
3) Vert \angle 'S thm
4) SAS
5) $С$ СРСТС
6) GIVEN:
$\angle D \cong \angle C$ \& $\overline{D E} \cong \overline{C E}$
PROVE:
$\overline{A D} \cong \overline{B C}$
STATEMENT
7) $\angle D \cong \angle C$
8) $\overline{D E} \cong \overline{E C}$
9) $\angle B E C \cong \angle A E D$
10) $\triangle A E D \cong \triangle B E C$
11) $\overline{A D} \cong \overline{B C}$

REASON

1) Given
2) Given
3) Vert $\angle ' S$ thm
4) ASA
5) СРСТС

Types of Angles:	Definition	Sketch
Adjacent Angles	Angles that share a vertex and a ray and NO interior points	
Vertical Angles	Non-adjacent angles formed by the intersection of 2 lines.	
Linear Pair	2 angles that are adjacent and sum to 180 (form a line)	
Supplementary Angles	2 or more angles that sum to 180 (they don't have to be adjacent)	
Complementary Angles	2 or more angles that sum to 90 (they don't have to be adjacent)	

Example Problems:

1. Solve the following.
a) $x=113^{\circ}$
$y=67^{\circ}$
b) $x=44^{\circ}$
$y=53^{\circ}$
c) $x=21^{\circ} \quad y=90^{\circ}$

$$
\begin{aligned}
x+67 & =180 \\
x & =113^{\circ}
\end{aligned}
$$

$$
\ldots
$$

$$
\begin{aligned}
& y+127=180 \\
& y=53^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& 3 x-5=127 \\
& 3 x=132 \\
& x=44^{\circ}
\end{aligned}
$$

2. $\angle 5$ and $\angle 3$ are vertical angles.
3. $\angle 1$ and $\angle 5$ are a linear pair.
(T) or F
4. $\angle 4$ and $\angle 3$ are adjacent angles.
(T) or F
5. $\angle 4$ and $\angle 1$ are vertical angles.
(T) or F
6. $\angle 3$ and $\angle 4$ are a linear pair.
T or F

Are there any complementary angles? Why or why not?
No, because there are no right angles given
180°
7. If $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are supplements and $\mathrm{m} \angle \mathrm{A}=150^{\circ}$, what is $\mathrm{m} \angle \mathrm{B}$? $\quad 30^{\circ}$

$$
180-150
$$

90°
8. If $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are complements and $\mathrm{m} \angle \mathrm{A}=27^{\circ}$, what is $\mathrm{m} \angle \mathrm{B}$? 63°

$$
90-27
$$

\cong
9. If $\angle \mathrm{A}$ and $\angle \mathrm{B}$ are vertical angles and $\mathrm{m} \angle \mathrm{A}=36^{\circ}$, what is $\mathrm{m} \angle \mathrm{B}$? \qquad 36°
10. If $\angle A$ and $\angle B$ are a linear pair and $m \angle A=2 x+8$ and $m \angle B=3 x+2$, what is the value of x ? $x=$ 34°

$$
2 x+8+3 x+2=180
$$

$$
5 x+10=180
$$

$$
5 x=170
$$

$$
\cong \quad x=34
$$

11. If $\angle A$ and $\angle B$ are vertical angles and $m \angle A=7 x-5$ and $m \angle B=4 x+10$, what is the value of x ? $x=$

$$
7 x-5=4 x+10
$$

\qquad 5°

$$
\begin{aligned}
& 3 x=15 \\
& x=5
\end{aligned}
$$

