Geometry (G.GMD.1)

Unit Three: Area Formulas Graphic Organizer (IC1)

Name: _	
Date:	Period:

Shape	Area Formula	Diagram/Example	Notes
Square	A = bh	$8 = x\sqrt{2}$ $8 \cdot \sqrt{2} = x\sqrt{2} \cdot \sqrt{2}$ $8 \sqrt{2} = 2x$ $x = 4\sqrt{2}$ $A = 4\sqrt{2} * 4\sqrt{2} = 16 * 2 = 32 \text{ u}$	 All sides are ≅ Parallelogram, rectangle, rhombus formulas work too.
Rectangle	A = bh	$ \begin{array}{c} 8^{2} + x^{2} = 17^{2} \\ 64 + x^{2} = 289 \\ x^{2} = 225 \\ x = 15 \\ A = 15 \\ x = 120 \\ x = 12$	
Parallelogram	A = bh	$12 = x\sqrt{2}$ $12 \cdot \sqrt{2} = x\sqrt{2} \cdot \sqrt{2}$ $12\sqrt{2} = 2x$ $x = 6\sqrt{2}$ $A = 6\sqrt{2} * 19\sqrt{2} = 114 * 2 = 228 u^{2}$	
Triangle	$A = \frac{1}{2}bh$ $A = \frac{1}{2}ab sinC$	$37^{2} = 12^{2} + h^{2}$ $h = 35$ $A = \frac{1}{2}(24)(35)$ $= 420 u^{2}$	 Base and height must be ⊥ Special Δs, Pythagorean thm., trig., etc. can help to find missing heights or bases.
Rhombus	$A = bh$ $A = \frac{1}{2} d_1 d_2$	$55^{2} = 44^{2} + x^{2}$ $x = 33$ $A = \frac{1}{2} d_{1} d_{2}$ $A = \frac{1}{2} (88)(66) = 2904 u^{2}$	• Use WHOLE diagonals when using $A = \frac{1}{2} d_1 d_2$

Trapezoid	$A = \frac{1}{2}h(b_{1}+b_{2})$	$A = \frac{1}{2}h(b_{1}+b_{2})$ $A = \frac{1}{2}(6)(11+23)$ $A = 102 u^{2}$ $H = \frac{6}{11} = 6$	 Isoscelese trapezoids have 2 ≅ legs.
Circle	$A = \pi r$ $C = 2\pi r = \pi d$		 2 radii = diameter If answer is to be exact, don't actually multiply by π
Regular Polygon (all sides ≅)		Central angle = $\frac{360}{n}$ n = # of sides in polygon	 Hexagons have special right triangles (30 – 60 – 90) that can be used to keep answers <u>exact</u>.
		a = apothem p = perimeter	