\qquad
Date: \qquad Period: \qquad

Shape	Area Formula	Diagram/Example	Notes
Square	$A=b h$	$\begin{aligned} & 8=x \sqrt{2} \\ & 8 \cdot \sqrt{2}=x \sqrt{2} \cdot \sqrt{2} \\ & 8 \sqrt{2}=2 x \\ & x=4 \sqrt{2} \\ & \quad A=4 \sqrt{2} * 4 \sqrt{2}=16^{*} 2=32 u^{24 \sqrt{2}} \end{aligned}$	- All sides are \cong - Parallelogram, rectangle, rhombus formulas work too.
Rectangle	$A=b h$	$\begin{aligned} & 8^{2}+x^{2}=17^{2} \\ & 64+x^{2}=289 \\ & x^{2}=225 \\ & x=15 \quad \mathrm{~A}=\mathrm{bh} \\ & \mathrm{~A}=15 * 8=120 \mathrm{u}^{2} \end{aligned}$	
Parallelogram	$A=b h$	$\begin{aligned} & 12=x \sqrt{2} \\ & 12 \cdot \sqrt{2}=x \sqrt{2} \cdot \sqrt{2}^{c}{ }^{c}{ }^{480} \\ & 12 \sqrt{2}=2 x \\ & x=6 \sqrt{2} \end{aligned} \quad A=6 \sqrt{2} * 19 \sqrt{2}=114 * 2=228 u^{2}$	
Triangle	$\begin{gathered} A=\frac{1}{2} b h \\ A=\frac{1}{2} a b \sin C \end{gathered}$	$\begin{aligned} & \begin{array}{l} 37^{2}=12^{2}+h^{2} \\ h=35 \\ A \end{array}=\frac{1}{2}(24)(35) \\ & =420 u^{2} \end{aligned}$	- Base and height must be \perp - Special $\Delta \mathrm{s}$, Pythagorean thm., trig., etc. can help to find missing heights or bases.
Rhombus	$\begin{aligned} & A=b h \\ & A=\frac{1}{2} d_{1} d_{2} \end{aligned}$	$\begin{aligned} & 55^{2}=44^{2}+x^{2} \\ & x=33 \\ & A=\frac{1}{2} d_{1} d_{2} \\ & A=\frac{1}{2}(88)(66)=2904 u^{2} \end{aligned}$	- Use WHOLE diagonals when using $A=\frac{1}{2} d_{1} d_{2}$

Trapezoid	$A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$	$\begin{aligned} & A=\frac{1}{2} h\left(b_{1}+b_{2}\right) \\ & A=\frac{1}{2}(6)(11+23) \\ & A=102 u^{2} \end{aligned}$	- Isoscelese trapezoids have $2 \cong$ legs.
Circle	$\begin{aligned} & A=\pi r^{2} \\ & C=2 \pi r=\pi d \end{aligned}$		- 2 radii $=$ diameter - If answer is to be exact, don't actually multiply by π
Regular Polygon (all sides \cong)		Central angle $=\frac{360}{n}$ $\mathrm{n}=$ \# of sides in polygon $\begin{aligned} & a=\text { apothem } \\ & p=\text { perimeter } \end{aligned}$	- Hexagons have special right triangles ($30-60-90$) that can be used to keep answers exact.

