Name: \qquad
Date: \qquad Period: \qquad
Concept 1. Using the described dilation, determine the location of the missing point. Think backwards:

a) $D_{O, 3}$
$(B)=(\quad G \quad)$
b) $D_{O,-2}(H)=\left(_\right.$C $)$
c) $D_{H, 4}\left(_\right.$B $)=(F)$

Center $\rightarrow{ }^{\circ}$ Kcale factor (n) -3 units from 0
Strategy:

1. Determine the distance fromnter of dilationo \qquad pre-image.
2. Scale the distance.

From O to $\mathrm{B}_{3} \mathrm{~s}^{\text {Lopate }}$ the \qquad the corresponding distance and direction
\qquad from the center.

Therconcerte 2 . What hàppens when the center of dilation is a vertex of the shape?

The shape doesn't move, it is just enlarged or reduced. If $n>0$, then same direction as pre-image
(Imagine that the vertex is the origin)
If $n<0$, then opposite direction as pre-image
a) Dilate $\triangle \mathrm{ABC}$ from C using a scale factor of 2
$D_{C, 2}(\triangle A B C)$
b) Dilate $\triangle \mathrm{DEF}$ from D using a scale factor of 3 $D_{D, 3}(\triangle D E F)$

Concept 3. What happens when the center of dilation is inside the shape? The shape expands or contracts (Imagine it's the origin)
a) Dilate $\triangle A B C$ from G using a scale factor of 3 $D_{G, 3}(\triangle A B C)$
b) Dilate $\triangle \mathrm{DEF}$ from H using a scale factor of 2
$D_{H, 2}(\triangle D E F)$

Review. Use a compass and a straightedge to construct the following dilations.
$D_{o, \frac{1}{2}}(\triangle A D B) \quad$ (Construct perpendicular bisectors)

Review. Work backwards to find the center of dilation, and also determine the scale factor.
a) Center ($-2,1 \quad$ _ $)$ Scale Factor $=\ldots$

Review. Determine whether the following are stretch or dilation transformations.
a) $H(x, y)-->(2 x, 5 y)$
x and y coordinates not changed by the same amount.
b)

Stretch
or

Would really need more evidence to confirm.

b) Center of dilation is G. $G(-2,5) \quad A(0,4) \quad n=3$

Determine A^{\prime}

- $\mathrm{n}=3$ means three slope/rise over run moves from center.

$$
A^{\prime}(4,2)
$$

c) Center of dilation is $B . \quad B(3,-4) \quad C(-9,0) \quad n=-\frac{1}{2}$

Determine C'

- Slope is $-4 / 12 \rightarrow$ half as far $\rightarrow-2 / 6$ but opposite direction since negative

$$
C^{\prime}(9,-6)
$$

