Geometry (G.c.2)
Unit Five: Circles - Tangents (IC2)

Name: \qquad
Date: \qquad Period: \qquad

Tangent - A line that intersects a circle only once
Facts Related to Tangents:

1. Draw the following relationships.
a) $\overleftrightarrow{A B}$ tangent to circle H at B.

c) In circle A, Radius $\overline{A B}$
perpendicular to $\overleftrightarrow{B D}$

2. $\overleftrightarrow{G C}$ is a common external tangent to circles A and B. Explain why $\Delta G B D \sim \Delta G A C$.

- $\angle G \cong \angle G \rightarrow$ reflexive property
- $\angle A C G \cong \angle B D G \rightarrow$ intersection of radii and tangents form right \angle 's and all right \angle 's are \cong

- $\quad \Delta \mathrm{GBD} \sim \Delta \mathrm{GAC}$ by AA^{\sim}

3. Solve for the missing information, given the $\overleftrightarrow{A B}$ is a tangent line to circle \mathbf{C}.
a)

b)

$$
A B=12 \mathrm{~cm}
$$

$$
\begin{aligned}
& 5^{2}+c^{2}=13^{2} \\
& b=12
\end{aligned}
$$

c)

$$
\mathrm{CB}=5 \mathrm{~cm}
$$

4. Determine if the $\overleftrightarrow{A B}$ is a tangent line or not.
\rightarrow Needs to be a right Δ which means test the Pythagorean Chm (make LONGEST side = "c"
a)

Yes or No
b)

5. Given that $\overleftrightarrow{A B}$ is tangent to circle C and $E A=9 \mathrm{~cm}$ and $A B=15 \mathrm{~cm}$, determine CB. (Hint: Label the two radii with x)
$x^{2}+15^{2}=(x+9)^{2} \longrightarrow$ Do NOT "distribute" the exponent.
$x^{2}+225=(x+9)(x+9) \longrightarrow$ Multiply the binomials together
$x^{2}+225=x^{2}+9 x+9 x+81$
$x^{2}+225=x^{2}+18 x+81$

$C B=8 \mathrm{~cm}$

$$
144=18 x
$$

$$
x=8
$$

6. Solve for $\mathrm{x}(\overline{A B}$ and $\overline{A D}$ are tangent lines)
a)

$$
\begin{aligned}
& 5 x-3=77 \\
& 5 x=80 \\
& x=16
\end{aligned}
$$

b)

$$
x=\underline{16 \mathrm{~cm}}
$$

$$
x=12 \mathrm{~cm}
$$

7. Solve for the missing information (Lines that appear to be tangent are tangent.)

Perimeter $=40 \mathrm{~cm}, \mathrm{AC}=15 \mathrm{~cm}, \mathrm{AF}=8.5 \mathrm{~cm}$

$$
\begin{aligned}
\mathrm{FE}= & \underline{5 \mathrm{~cm}} \\
& 8.5+6.5+2 y+6.5+8.5=40 \\
& 2 y+30=40 \\
& 2 y=10 \\
& y=5
\end{aligned}
$$

