\qquad
Unit Two: Law of Sines (IC30)
Date: \qquad Period: \qquad

1. Derive the Law of Sines.

Law of sines:

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

$$
\left.\begin{array}{ll}
\sin A=\frac{h}{c} & \sin C=\frac{h}{a} \\
h=c \sin A & h=a \sin C \\
\frac{c \sin A}{c}=\frac{a \sin C}{c} \\
\frac{\sin A}{a}=\frac{a \sin C}{\frac{c}{a}}
\end{array}\right\} \quad \frac{\sin A}{a}=\frac{\sin C}{c}
$$

2. Which of the following three pieces of information work with the Law of Sines?

$m \angle A=49^{\circ}$
You can find $m \angle B$ by subtracting from 180°

As long as there is a side And angle pair, then Law of sines is possible
b) Yes or No
e) Yes or No
$\mathrm{a}=10 \mathrm{~cm}$
$b=15 \mathrm{~cm}$
$\mathrm{c}=9 \mathrm{~cm}$
h) Yes or No
$m \angle A=20^{\circ}$
$\mathrm{m} \angle \mathrm{B}=65^{\circ}$
$\mathrm{m} \angle \mathrm{C}=95^{\circ}$
c) Yes or No $\begin{aligned} & \mathrm{N} \angle A=47^{\circ} \\ & \mathrm{m} \angle B=98^{\circ} \\ & a=24 \mathrm{~cm}\end{aligned}$
f) Yes or No
$\mathrm{m} \angle \mathrm{C}=41^{\circ}$
$b=14 \mathrm{~cm}$
$a=24 \mathrm{~cm}$
i) Yes or No

$$
\mathrm{m} \angle \mathrm{C}=41^{\circ}
$$

$$
\mathrm{m} \angle \mathrm{~B}=98^{\circ}
$$

$$
\mathrm{a}=15 \mathrm{~cm}
$$

$$
\mathrm{m} \angle \mathrm{~A}=41^{\circ}
$$

3. Explain why the Law of Sines doesn't work for $\triangle A B C$ if you are given, $m \angle A, b$ and c.

There are no 2 paired together,

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

so there will always be more

 than one unknown/variable.4. Jonathan says that you can't use the Law of Sines in $\triangle A B C$ if you are given $m \angle A, m \angle B$ and c because there is no 'pairing' of an angle with its opposite side. Brittney disagrees with Jonathan. Brittney is correct; you can use the Law of Sines with this situation. Explain why it is possible.
$\mathrm{m} \angle \mathrm{C}=180^{\circ}-\mathrm{m} \angle \mathrm{A}-\mathrm{m} \angle \mathrm{B}$ so although you don't have an angle and opposite side, you can find $m \angle C$.
5. Solve the following problems using the Law of Sines.
a.

$$
\frac{\sin 39}{17}=\frac{\sin 37}{a}
$$

$$
a=\frac{17 \sin 37}{\sin 39}
$$

$$
a \approx 16.26 \mathrm{~cm}
$$

$$
4
$$

$$
m \angle C=180^{\circ}-104-37
$$

$$
\mathrm{m} \angle \mathrm{C}=39^{\circ}
$$

$$
\begin{aligned}
& \frac{\sin 39}{17}=\frac{\sin 104}{b} \\
& b=\frac{17 \sin 104}{\sin 39}
\end{aligned}
$$

b. $m \angle A=41^{\circ}, a=9 \mathrm{~cm}, c=6 \mathrm{~cm}$

$$
m \angle B=180-41-25.94
$$

$$
b \approx 26.21 \mathrm{~cm}
$$

$$
\begin{aligned}
& \frac{\sin 41}{9}=\frac{\sin C}{6} \\
& \sin C=\frac{6 \sin 41}{9} \\
& C \approx 25.94^{\circ}
\end{aligned}
$$

$$
\frac{\sin 41}{9}=\frac{\sin 113.06}{b}
$$

$$
b=\frac{9 \sin 113.06}{\sin 41}
$$

$$
b \approx 12.62 \mathrm{~cm}
$$

6. Bernice has a triangular garden plot. Two of the three angles of her plot measure 76° and 36° and the included side is $\mathbf{2 3}$ feet. Find the length of the other two sides.

$$
\begin{array}{ll}
\frac{\sin 68}{23}=\frac{\sin 76}{x} & \frac{\sin 68}{23}=\frac{\sin 36}{y} \\
x=\frac{23 \sin 76}{\sin 68} & y=\frac{23 \sin 36}{\sin 68} \\
x \approx 24.07 \mathrm{ft} & y \approx 14.58 \mathrm{ft}
\end{array}
$$

