\qquad
\qquad Period: \qquad

1. Derive the Law of Cosines.

Yellow triangle
$h^{2}+(b-x)^{2}=a^{2} \leftarrow$ simplify this eqn
$h^{2}+(b-x)(b-x)=a^{2}$
$h^{2}+b^{2}-2 b x+x^{2}=a^{2}$
$x^{2}+h^{2}=c^{2} \rightarrow x^{2}=c^{2}-h^{2}$
$\cos A=\frac{x}{c} \rightarrow x=\cos A$ $h^{2}+b^{2}-2 b x+c^{2}-h^{2}=a^{2}$ $b^{2}-2 b x+c^{2}=a^{2}$
$b^{2}-2 b c \cos A+c^{2}=a^{2}$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
2. Why doesn't SSS and SAS information work with the Law of Sines?

No side/angle pair, so too many variables left to solve easily

3a) Using the Law of Cosines, solve for side a.

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& a^{2}=19^{2}+12^{2}-2(19)(12) \cos 54 \\
& \sqrt{a^{2}}=\sqrt{19^{2}+12^{2}-456 \cos 54} \\
& a \approx 15.39 \mathrm{~cm}
\end{aligned}
$$

b) The teacher asks Jeremy to solve for the smallest angle next. Which angle is the smallest? \qquad
c) How can you determine which angle is smaller of the two?

Small angles are opposite of small sides since
$12 \mathrm{~cm}<19 \mathrm{~cm}, \angle \mathrm{C}$ is less than $\angle \mathrm{B}$.
4. Jazmine is about to solve this triangle by using the Law of Cosines. The teacher asks Jazmine to solve for the largest angle first.
a) Which angle is the largest? \qquad $\angle A$
b) How can you determine which angle is the largest?

Opposite longest side.
c) Solve the triangle.

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& 19^{2}=17^{2}+15^{2}-2(17)(15) \cos A \\
& 361=289+225-510 \cos A \\
& -153=\frac{-510 \cos A}{-510} \\
& \cos A=0.3 \\
& A=\cos ^{-1}(0.3) \\
& A \approx 73^{\circ}
\end{aligned}
$$

*Once you know an angle, Switch to Law of Sines to Finish the problem.

$$
\begin{aligned}
& \frac{\sin 73}{19}=\frac{\sin B}{17} \\
& 19 \sin B=17 \sin 73 \\
& \sin B=\frac{17 \sin 73}{19} \\
& B=\sin ^{-1}\left(\frac{17 \sin 73}{19}\right) \\
& B \approx 59^{\circ}
\end{aligned}
$$

$$
m \angle C=180-73-59 \approx 48^{\circ}
$$

5. Why did we need the Law of Cosines? Why isn't the Law of Sines good enough?

We didn't have an angle/opp side pair.
6. Write out the three versions of the Law of Cosines for the given triangle.

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A \\
& b^{2}=a^{2}+c^{2}-2 a c \operatorname{Cos} B \\
& c^{2}=a^{2}+b^{2}-2 a b \operatorname{Cos} C
\end{aligned}
$$

