\qquad
Unit Two: Law of Sines \& Cosines Applications (IC/HW32)
Date: \qquad Period: \qquad

1. Jack and Jill are tying decorative string from the top of the Christmas Tree to the ground. They will do this many times in many different colors creating a very unique celebration of color and pattern. What is the length of Jill's string based on the measurements provided? (round to the nearest foot)

$$
\begin{array}{ll}
\frac{\sin 95}{40}=\frac{\sin 50}{a} & \frac{\sin 95}{40}=\frac{\sin 35}{c} \\
\frac{\mathrm{a} \sin 95}{\sin 95}=\frac{40 \sin 50}{\sin 95} & \frac{\mathrm{csin} 95}{\sin 95}=\frac{40 \sin 35}{\sin 95} \\
\mathrm{a}=\frac{40 \sin 50}{\sin 95} & \mathrm{c}=\frac{40 \sin 35}{\sin 95} \\
\mathrm{a} \approx 31 \mathrm{ft} & \mathrm{c} \approx 23 \mathrm{ft}
\end{array}
$$

$$
\text { String } \approx 31+23=54 \mathrm{ft}
$$

2. From the lighthouse two boats are spotted. The line of sight to the two boats is 450 ft to boat A and 385 ft to boat B . If the line of sight angle between the two boats is 11°, how far apart are the boats from each other? (round to the nearest foot)

$$
\begin{aligned}
& c^{2}=450^{2}+385^{2}-2(450)(385) \cos 11 \\
& c \approx 103
\end{aligned}
$$

3. A boy lets out 55 ft of string on his $1^{\text {st }}$ kite but it gets stuck in the tree... instead of getting it out of the tree he picks up his $2^{\text {nd }}$ kite and lets out 75 ft of string. It too gets stuck in the tree but higher up. If the line of sight angle to the two kites is 15°, how much higher is the one kite from the other? (nearest foot)

$$
\begin{aligned}
& \mathrm{h}^{2}=75^{2}+55^{2}-2(75)(55) \cos 15 \\
& \mathrm{~h} \approx 26 \\
& \quad 26 \mathrm{ft}
\end{aligned}
$$

4. Jack views the bird sitting on the steeple of the church at an angle of elevation of 40° and Jane views the same bird at an angle of elevation of 32°. If they are $\mathbf{1 1 0} \mathbf{~ m}$ apart, how much shorter is the line of sight for Jack to see the bird than for Jane? (round to the nearest m)

$$
\begin{array}{ll}
\frac{\sin 108}{110}=\frac{\sin 40}{a} & \frac{\sin 108}{110}=\frac{\sin 32}{c} \\
\frac{a \sin 108}{\sin 108}=\frac{110 \sin 40}{\sin 110} & \frac{\operatorname{csin} 95}{\sin 95}=\frac{40 \sin 35}{\sin 95} \\
\mathrm{a} \approx 74 \mathrm{~m} & \mathrm{c} \approx 61 \mathrm{~m}
\end{array}
$$

Difference: 74-61 = 13 m

5. A surveyor wishes to find the distance between two points A and B on opposite sides of a lake. While standing at point C, she finds that $A C=356 \mathrm{~m}, \mathrm{BC}=423 \mathrm{~m}$ and that the angle $A C B$ is 132°. Find the distance from A to B ? (round to the nearest meter)

$$
\begin{aligned}
& \mathrm{c}^{2}=423^{2}+356^{2}-2(423)(356) \cos 132 \\
& \mathrm{c} \approx 712
\end{aligned}
$$

6. A ship leaves port at an angle of 22° and travels 18.5 miles. The ship then turns due east for another 6 miles. How far is the ship from port? (nearest mile)

7. The sides of a parallelogram are 55 cm and 71 cm . Find the length of each diagonal if the larger angle of the parallelogram is 106°.

$$
\begin{gathered}
x^{2}=55^{2}+71^{2}-2(55)(71) \cos 106 \\
x^{2}=10218.72775 \\
x \approx 101 \mathrm{~cm} \\
y^{2}=55^{2}+71^{2}-2(55)(71) \cos 74 \\
x \approx 77 \mathrm{~cm}
\end{gathered}
$$

8. A 40-foot television antenna stands on top of a building. From a point on the ground, the angles of elevation to the top and bottom of the antenna measure 56° and 42° respectively. How tall is the building?

$$
\begin{aligned}
& 180-90-56=34^{\circ} \\
& \frac{\sin 34}{x}=\frac{\sin 14}{40} \\
& x \approx 92.4584 \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
& \sin 42=\frac{y}{92.4581} \\
& y \approx 62 \mathrm{ft}
\end{aligned}
$$

9. A house is built on a triangular plot of land. Two sides of the plot are 160 feet long and they meet at an angle of 85°. If a fence is to be built around the property, how much fencing material is needed?

$$
\begin{aligned}
& \frac{\sin 47.5}{160}=\frac{\sin 85}{b} \\
& b \approx 216 \mathrm{ft}
\end{aligned}
$$

$$
160+160+216=536 \mathrm{ft}
$$

