Geometry (G.GPE.B.5)

Unit One B: Slopes of Parallel and Perpendicular Lines (IC32)

Name: \qquad

Using what you remember about transformations:

1. Translate the graphed line 3 units to the right. Label your new line $\boldsymbol{\alpha}$.

Find the slope of line $b: \frac{\frac{-3}{2}}{\frac{-3}{2}}$
3. Rotate the line 90° counter-clockwise about the point. Label the new line α.

Find the slope of line a : \qquad

Summarize:

The slopes of \qquad parallel lines are \qquad equal.
Find the slope of line $b: \frac{\frac{-3}{2}}{\frac{2}{3}}$
Find the slope of line $a: ـ$
Find the slope of line $b: \frac{\frac{\pi}{2}}{2}$
Find the slope of line $a: \frac{\frac{2}{3}}{}$
\qquad

Rotate the line 90° clockwise about the point. Label the new line \boldsymbol{a}. .

The slopes of \qquad lines are \qquad opposite reciprocals.

$$
\text { Ex: } m_{\text {line } a}=\frac{1}{3} \text { and } m_{\text {line } b}=-3
$$

The symbol for slope is \qquad .

The formula for slope is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { rise }}{\text { run }}$.

The symbol for the y-intercept is \qquad .

Using Slope to write the Equation of the Line in Slope-Intercept Form

Example: Write the equation of the line through $\left(0^{2}, 9\right)^{1}$, and $\left(\mathcal{1}^{2}, 5\right)^{2}$.
Step One - Find slope:

$$
y \text {-intercept since } x=0
$$

$$
m=\frac{5-9}{1-0}=\frac{-4}{1}=-4
$$

Step Two - Use $\mathbf{y}=\mathbf{m x} \mathbf{+} \mathbf{b}$ (the slope-intercept form for the equation of a line):

$$
\begin{array}{ll}
\text { Using }(1,5) \\
5=-4(1)+b & \\
5=-4+b \\
b=9 & (x, y) \\
b=-4 x+9 \\
\hline
\end{array}
$$

You Try: Write the equation of the line through the points $(-3,2)^{1}$ and $\left(-4,5^{2}\right)$.

$$
m=\frac{5-2}{-4-(-3)}=\frac{3}{-1}=-3
$$

Using (-3, 2)
$2=-3(-3)+b$
$2=9+b$
$b=-7$

Using ($-4,5$)
$5=-3(-4)+b$
$5=12+b$
$b=-7$

Writing Equations of Parallel and Perpendicular Lines

$$
y=-3 x-7
$$

Example: Write the equation for a line parallel to one with $m=2$ and passing through the point $(3,7)$.

$$
\begin{array}{lr}
7=2(3)+b \\
7=6+b & \text { same slope } \\
b=1 & y=2 x+1
\end{array}
$$

Example: Write the equation for a line perpendicular to one with $m=\frac{3}{2}$ and passing through the point $(3,5)$.

$$
\begin{array}{ll|}
5=\frac{-2}{3}(3)+b \\
5=-2+b & \text { opp reciprocal slope }
\end{array} \quad y=\frac{-2}{3} x+7
$$

$$
b=7
$$

Example: Write the equation for a line through the point ($-9,5$):
a. parallel to $y=9 x+3$
$5=9(-9)+b \quad$ slope
$5=-81+b$
b $=86$

$$
y=9 x+86
$$

b. perpendicular to $y=9 x+3$
Slope $=$ opp reciprocal
$m=\frac{-1}{9}$

$$
\begin{aligned}
& 5=\frac{-1}{9}(-9)+b \\
& 5=1+b \\
& b=4
\end{aligned}
$$

$$
y=\frac{-1}{9} x+4
$$

Example: Are the following lines parallel, perpendicular, or neither? $\underbrace{7 x-5 y=10}$ and $y=\frac{5}{7} x+4$

$$
\begin{gathered}
7 x-5 y=10 \\
-5 y=-7 x+10 \\
y=\frac{7}{5} x-2
\end{gathered}
$$

Solve for " y " to see slope
$\frac{7}{5} \& \frac{5}{7}$ are reciprocals, but not opposite

