Geometry (G.CO.10)
Unit One B: Coordinate Geometry Triathlon - Leg 1 (IC34)

Name: \qquad
Date: \qquad Period: \qquad

1. Find the slope of the line parallel to the one that passes through $(-4,2)$ and $(0,-5)$.
$m=\frac{-5-2}{0+4}=\frac{-7}{4}$
Parallel \rightarrow same slope $\rightarrow \frac{-7}{4}$
2. Find the slope of a line perpendicular to the line $y=-2 x+1$
$\perp \rightarrow$ slopes are opp. Reciprocals $\rightarrow \mathrm{m}=1 / 2$
3. Write the equation of a line parallel to $2 x+3 y=9$ that passes through the point $(-6,-2)$.

Solve for y to identify the slope

$$
y=\frac{-2}{3} x+b
$$

$3 y=-2 x+9$ $-2=\frac{-2}{3}(-6)+b$
$y=\frac{-2}{3} x+3 \quad$ parallel \rightarrow same slope $\rightarrow m=\frac{-2}{3}$

$$
-6=b
$$

$$
y=\frac{-2}{3} x-6
$$

4. Are the following lines parallel, perpendicular, or neither? $4 x-y=1$ and $x+4 y=12$

$$
\begin{array}{lr}
-y=-4 x+1 & 4 y=-x+12 \\
y=4 x-1 & y=\frac{-1}{4} x+3 \\
m=4 & m=\frac{-1}{4}
\end{array}
$$

Geometry (G.CO.10)
Unit One B: Coordinate Geometry Triathlon - Leg 2 (IC34)
Name
Date: \qquad Period: \qquad

1. Find the distance between the points $(-4,2)$ and $(0,-5)$.

$$
d=\sqrt{(0+4)^{2}+(-5-2)^{2}}=\sqrt{16+49}=\sqrt{65} \approx 8.1
$$

$4^{2}+7^{2}=c^{2}$

$$
c^{2}=16+49
$$

2. Find the midpoint of the segment with endpoints at $(-4,2)$ and $(0 .-5)$.
$m=\left(\frac{-4+0}{2}, \frac{2-5}{2}\right)=\left(-2, \frac{-3}{2}\right)$
3. Write the equation of atline paratiel to $7 x+6 y=18$ through the point $(0,2)$.

$$
\begin{aligned}
6 y & =-7 x+18 \\
y & =\frac{-7}{6} x+3 \\
m & =\frac{-7}{6}
\end{aligned}
$$

$$
\begin{gathered}
y=\frac{-7}{6} x+b \\
y=\frac{-7}{6} x+2
\end{gathered}
$$

Geometry (G.CO.10)
Unit One B: Coordinate Geometry Triathlon - Leg 3 (IC34)

Name: \qquad
Date: \qquad Period: \qquad

1. Find the length and midpoint of the segment graphed on the grid below.

$$
\begin{aligned}
& d=\sqrt{5^{2}+6^{2}}=\sqrt{25+36}=\sqrt{61} \approx 7.81 \\
& \mathrm{M}=\left(\frac{-1+5}{2}, \frac{4-1}{2}\right)=\left(2, \frac{3}{2}\right)
\end{aligned}
$$

2. Write the equation of the line that passes through $(-4,-2)$ and $(-3,5)$.
$m=\frac{5+2}{-3+4}=\frac{7}{1}=7 \quad y=7 x+b$

$$
\begin{array}{ll}
-2=7(-4)+b & y=7 x+26 \\
26=b &
\end{array}
$$

3. Are the following equations parallel, perpendicular, or neither? $4 x+8 y=10$ and $y-6=-2 x+2$

$$
\begin{aligned}
8 y & =-4 x+10 \\
y & =\frac{-1}{2} x-\frac{5}{4} \\
m & =\frac{-1}{2}
\end{aligned} \quad y=-2 x+8
$$

Neither, not opposites

