\qquad
\qquad Period: \qquad

Slope	Distance/Length	Midpoint
1. $m=\frac{\text { rise }}{\text { run }}$ (use with graph)	1. $a^{2}+b^{2}=c^{2}$ (Right triangle)	
2. $m=\underset{\underline{y}_{2}-y_{1}}{x_{2}-x_{1}}$ (use with points)		$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
3. Parallel lines have the SAME slope.	2. $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ Use with points	* Average of the endpoints
4. Perpendicular lines have the OPPOSITE and RECIPROCAL slopes.		

Writing Equations of Lines: $E x . y=m x+b \rightarrow y=1 / 2 x+5$
Step One:
Step Two:
Find the slope (using one of the 4 methods) $\begin{aligned} & \text { Plug the slope and an ordered pair of the line into } y=m x+b \\ & \text { or solve the equation for } y\end{aligned} \quad \begin{aligned} & \text { and solve for } b\end{aligned}$
Ex. $2 x-3 y=6$
$-3 y=-2 x+6$
$y=2 / 3 x-2 \rightarrow$ slope $=2 / 3$

Unit One B: Parallelograms Graphic Organizer

Proving Quadrilaterals are Parallelograms:

1. If quad has both pairs of opposite sides parallel \rightarrow \|gram (definition of parallelogram)
2. If quad has both pairs of opposite sides congruent \rightarrow Ingram
3. If quad has both pairs of opposite angles congruent \rightarrow \|gram

4. If quad has diagonals that bisect each other \rightarrow \|gram
5. If quad has one pairs of opposite sides both parallel \& congruent \rightarrow Ingram

