Geometry (G.GMD.3)
Unit Three: Three Dimensional Solids (IC7-10)

Name: \qquad
Date: \qquad Period: \qquad

A Solid -3-D closed figure
A Polyhedron - Solid with polygons as faces
A Face of a Polyhedron - A polygon which is the "side" of a solid
An Edge - Intersection of 2 faces of solid
A Vertex - Intersection of edges of solid

RISMS A solid formed by a polygon and its parallel, translated image being connected by quadrilaterals along their edges.

Bases of a prism - The \cong and parallel faces of a prism (non-rectangular if present)
Lateral faces of a prism - Faces that are not the bases/ faces that connect the bases

Height of a prism $-\perp$ distance between the 2 bases
Your Turn: Given the rectangular prism with face BCFE as one of its bases. Use each value ONLY ONCE.

B or C
E or A

1. Edge
A. Rectangle ADHG

A or E
2. Lateral Face
B. $\overline{H F}$
\qquad
3. Base
C. $\overline{A D}$
D. Point B

B or C
4. Vertex
E. Rectangle HDCF

Right prisms - prisms with \perp bases and lateral faces

Oblique prisms - prisms with bases and lateral faces NOT \perp

PRISM VOLUME - THE STACKING PRINCIPLE
Cross Section -

A Stack of Coasters
 Cross Section:

triangles

HEIGHT

hexagons

rectangles

The stacking of congruent parallel cross sections allows us to create a formula for the volume of prism.
Volume $_{\text {prism }}=B$ where $B=$ the area of base and $h=$ height of prism

Cavalieri's Principle: If the areas of the cross sections of two solids by any plane parallel to a given plane are invariably equal, then the two solids have the same volume.
In other words, if two prisms have the same height and the same base then oblique and right prisms will have the same volumes.

Volumes are equal.

Volumes are equal.

Your Turn:

2. After looking at the rectangular prism to the right, a young lady in the class raises her hand and says, "Could I use rectangle ADCB as my base instead of rectangle BHGC?" What would you say?

Yes, because there is still one pair of \cong and parallel faces

3. Properly name the following prisms.

a)

Name:
cube
b)

Name: Right triangular prism
c)

Name: Oblique rectangular prism
d)

Name:
hexagonal prism
4. Jenny says that the two prisms DO NOT have the same volume because the cross sections are not the same.

Renee disagrees; she says that it isn't the shape that has to be the same it is the area. Renee thinks they have the same volume. Who is right and why? Find the volume of each prism to help justify your answer

$$
B=1 / 2(12)(5)=30
$$

$$
V=(30)(10)
$$

$$
V=300 \mathrm{~cm}
$$

$$
\begin{aligned}
V & =B \dot{h} \\
B & =(6)(5)=30 \\
V & =(30)(10)^{3} \\
V & =300 \mathrm{~cm}^{3}
\end{aligned}
$$

6 cm

$$
\mathrm{V}=\mathrm{Bh}
$$

5. Cavalieri's principle says that these two prisms have equal volume. Explain why that is true?

$$
B=12 \text { for both and } h=15 \text { for both, so = volume }
$$

6. Determine the volume of the prisms. (Lines that appear perpendicular are perpendicular.)
a)

$B=1 / 2(6)(7+14)=63$
$V=(63)(8)$
b) Right triangular prism

$B=1 / 2(6)(6)=18$
$\mathrm{V}=(18)_{3}(8)$
Volume $=144 \mathrm{~cm}$
\qquad
c) Right rectangular prism

$$
B=(2)(5)=10
$$

$$
V=(10)(6)
$$

3

Volume $=\underline{504} \mathrm{~cm}$
Volume = \qquad

Your Turn:

2. The two solids below have the same volume and height. Find the measurement for the base edge of the prism.

$$
\begin{aligned}
& \pi r h=B h \\
& \pi(4)^{2} h=x^{2} h \rightarrow h \text { is the same so it doesn't matter...' } \\
& \pi(4)^{2}=x^{2} \\
& 16 \pi=x^{2} \\
& \sqrt{16 \pi}=\sqrt{x^{2}} \\
& x \approx 7.1 \mathrm{~cm}
\end{aligned}
$$

3. Determine the volume of the cylinder.
a)

b)
c)

Cube - cylinder

* Not $=b / c$ radius gets squared, but height does not.

1. Jared wants to test out a new theory..... Instead of having the cross area sections the same as Cavalieri suggested he wants to half the radius of one cross section and then double the height to make up for it. He believes because he divided the radius by 2 but doubled the height that the volumes should be equal. Is he correct? Explain.

2
$V=\pi r h$
$=\pi(2)(10)$
$=40 \pi \mathrm{~cm}$

$$
\begin{align*}
V & =\pi r^{2} h^{2} \\
& =\pi(4)^{2}(5){ }_{3} \\
& =80 \pi \mathrm{~cm}^{3}
\end{align*}
$$

VOLUME $_{\text {CONE }}=\frac{B h}{3}$ or $\frac{\pi r h}{3}$

1) Determine the volume of each solid.
a)

$$
\begin{aligned}
V & =\frac{\pi r \mathrm{~h}}{3^{2}} \\
V & =\frac{\pi(4)(12)}{3} \\
& =64 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
V & =\frac{\pi r \mathrm{~h}}{3^{2}} \\
V & =\frac{\pi(5)(12)}{3} \\
& =100 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

c) $\mathrm{m} \sqrt{2}$

$$
12 \begin{aligned}
V & =\frac{\pi r \mathrm{~h}}{3^{2}} \\
V & =\frac{\pi(6)(12)}{3} \\
& =144 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

d)

e)

IC 9 - PYRAMID VOLUME

Given the square pyramid.
\qquad 1. Slant Height
\qquad 2. Apex
\qquad 3. Height
B
4. Lateral Edge
\qquad 5. Face

C,F 6. Vertex

Properly name each pyramid. Label both the height (h) and slant height (ℓ) in each pyramid.
a)

Name:
Right hexigonal pyramid
b)

Name:
Right
square pyramid
c)

Name:
Right

rectangular pyramid

d)

Name:
Right triangular pyramid
VOLUME ${ }_{\text {PYRAMID }}=\frac{1}{3}$ Rh or $\frac{\mathrm{Bh}}{3}$

Determine the volume of each pyramid.
a) Square Pyramid
b) Rectangular Pyramid
c) Regular Hexagonal Pyramid

$$
\begin{aligned}
& V=\frac{B h}{3} \\
& V=\frac{(36)(14)}{3}
\end{aligned}
$$

$V=\frac{\mathrm{Bh}}{3}$
$V=\frac{(48)(9.17)}{3}$

$B=1 / 2 a p$
$=1 / 2(4 \sqrt{3})(48)$
$=96 \sqrt{3}$

$$
\begin{aligned}
& V=\frac{B h}{3} \\
& V=\frac{(96 \sqrt{3})(20)}{3}
\end{aligned}
$$

$$
\text { Volume }=146.72 \mathrm{~cm}^{3}
$$

Determine the volume of each sphere.
a)

b)

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& =\frac{4 \pi(3)^{3}}{3} \\
& =\frac{108 \pi}{3}=36 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& =\frac{4 \pi(5)^{3}}{3} \\
& =\frac{500 \pi}{3} \mathrm{~cm}^{3}
\end{aligned}
$$

How would you find the volume of a hemisphere?
divide the volume of a sphere in half

$$
V=\frac{2}{3} \pi r
$$

