Geometry (G-SRT.4) Name: Date: ____ Period: ____ Unit 2: Side-Splitting Theorem – Day 1 (IC9) Review and Explore: Using what you know about similarity, answer the following. 1. Are there similar polygons shown in the diagram to the right? Why or why not? 5 Yes \rightarrow the || sides cause \cong corr \angle 's and/or reflexive prop. **10** = *x* y = 14Е 2. Solve for the missing measurements (variables in the diagram). γÒ н w =small side $\frac{small \, side}{large \, side} = \frac{20}{56} \qquad \frac{x}{x+18} = \frac{20}{56} \qquad \frac{5}{y} = \frac{20}{56} \qquad \frac{5+w=14}{w=9}$ 18 56x = 20x + 360 20y = 280 56 36x = 360y = 14 x = 10

3. Using your answers from #2, test each of the following proportions to identify whether they are true or false.

4. Using one of the descriptions below, fill in the proportions used in each part of #3 with their corresponding labels. The first one has been done as an example.

De	scription Choices: 1. Small Δ side	2. Large Δ side	3. Neither	
a)	$\frac{SH}{2} = \frac{SE}{2} \xrightarrow{Small \ \Delta \ side} = \frac{Small \ \Delta \ side}{2}$		$\sum_{SH} = \frac{HE}{A} $ Small Δ side \neq Small Δ	∆ side
	$\frac{1}{SA} - \frac{1}{SP}$ / $\frac{1}{Large \ \Delta side} - \frac{1}{Large \ \Delta side}$	ide Dj	$h_{HA} - \frac{1}{AP}$ Neither Large	∆ side
c)	$\frac{AS}{AS} = \frac{HE}{AS} \xrightarrow{Large \Delta side} \xrightarrow{Large \Delta side}$	mall Δ side	$0 \xrightarrow{SP} - \xrightarrow{HE} \frac{Large \Delta side}{d} \neq \frac{Small}{d}$	∆ side
	^{HS}AP Small Δ side L	arge Δ side	$f'_{se} = AP'$ Small Δ side f' Large	∆ side

e)
$$\frac{EP}{SE} = \frac{HA}{SH} \rightarrow \frac{Neither}{Small \,\Delta side} = \frac{Neither}{Small \,\Delta side}$$

- What occurred that caused the false proportion(s)?
 Mismatched corresponding parts
- 6. Did any true statements surprise you? Why?

(e) \rightarrow what's going on with the "neither" pieces?

The Side Splitting Theorem states: If a line is parallel to one side of a triangle, then it divides the other 2 sides of the triangle proportionally

Examples:

- 3. If $\overrightarrow{BE} \parallel \overrightarrow{AT}$, CB = 3, CA = 10, and CE = 6, what is ET? 4. In \overrightarrow{D}
 - a) 5 (b) 14 10 c) 20 d) 26 $\frac{3}{7} = \frac{6}{x}$ 6 or 3x = 4218 + 3x = 60x = 14 3x = 42x = 14
- 4. In $\triangle ABC$, D is on \overline{AB} , and E is on \overline{BC} such that $\overline{DE} \parallel \overline{AC}$. If DB = 2, DA = 7, and DE = 3, what is AC?

Not a side-splitter theorem problem!