Name: \qquad
Date: \qquad Period: \qquad

Review and Explore: Using what you know about similarity, answer the following.

1. Are there similar polygons shown in the diagram to the right? Why or why not? Yes \rightarrow the || sides cause $\cong \operatorname{corr} \angle$'s and/or reflexive prop.
2. Solve for the missing measurements (variables in the diagram).

$$
\frac{\text { small side }}{\text { large side }}=\frac{20}{56}
$$

$\frac{x}{x+18}=\frac{20}{56}$	$\frac{5}{y}=\frac{20}{56}$
$56 x=20 x+360$	$20 y=280$
$36 x=360$	$y=14$
$x=10$	

$5+w=14$
$w=9$

$$
x=10
$$

3. Using your answers from \#2, test each of the following proportions to identify whether they are true or false.
a) $\frac{S H}{S A}=\frac{S E}{S P}$ True False
b) $\frac{S H}{H A}=\frac{H E}{A P} \quad$ True

$$
\frac{10^{A P}}{18} \neq \frac{20}{56}
$$

False

$$
\frac{10}{28}=\frac{5}{14}
$$

c) $\begin{aligned} & \frac{A S}{H S}=\frac{H E}{A P} \\ & \frac{28}{10} \neq \frac{20}{56}\end{aligned}$
d) $\frac{S P}{S E}=\frac{H E}{A P} \quad$ True False

$$
\frac{28}{10} \neq \frac{20}{56}
$$

$$
\frac{14}{5} \neq \frac{20}{56}
$$

e) $\frac{E P}{S E}=\frac{H A}{S H}$ True False $\frac{9}{5}=\frac{18}{10}$
4. Using one of the descriptions below, fill in the proportions used in each part of \#3 with their corresponding labels. The first one has been done as an example.

Description Choices:
2. Large Δ side
3. Neither
a) $\frac{S H}{S A}=\frac{S E}{S P} \rightarrow \frac{\text { Small } \Delta \text { side }}{\text { Large } \Delta \text { side }}=\frac{\text { Small } \Delta \text { side }}{\text { Large } \Delta \text { side }}$
b) $\frac{S H}{H A}=\frac{H E}{A P} \rightarrow \frac{\text { Small } \Delta \text { side }}{\text { Neither }} \neq \frac{\text { Small } \Delta \text { side }}{\text { Large } \Delta \text { side }}$
c) $\frac{A S}{H S}=\frac{H E}{A P} \rightarrow \frac{\text { Large } \Delta \text { side }}{\text { Small } \Delta \text { side }} \neq \frac{\text { Small } \Delta \text { side }}{\text { Large } \Delta \text { side }}$
d) $\frac{S P}{S E}=\frac{H E}{A P} \rightarrow \frac{\text { Large } \Delta \text { side }}{\text { Small } \Delta \text { side }} \neq \frac{\text { Small } \Delta \text { side }}{\text { Large } \Delta \text { side }}$
e) $\frac{E P}{S E}=\frac{H A}{S H} \rightarrow \frac{\text { Neither }}{\text { Small } \Delta \text { side }}=\frac{\text { Neither }}{\text { Small } \Delta \text { side }}$
5. What occurred that caused the false proportion(s)?

Mismatched corresponding parts

6. Did any true statements surprise you? Why?
(e) \rightarrow what's going on with the "neither" pieces?

The Side Splitting Theorem states: If a line is parallel to one side of a triangle, then it divides the other 2 sides of the triangle proportionally

Examples:

1.

2.

$$
\frac{\text { Small side }}{\text { Neither }}=\frac{9}{x+3}=\frac{4}{x-2}
$$

$$
9 x-18=4 x+12
$$

$$
5 x=30
$$

$$
x=6
$$

- Can't use side-splitter theorem
solve for y because there is
"neither" piece. $\left\{\begin{array}{c}\frac{\text { Small side }}{\text { Large side }}=\frac{7}{y}=\frac{9}{18} \\ \begin{array}{c}9 \mathrm{y}=126 \\ \mathrm{y}=14\end{array}\end{array}\right.$

3. If $\overleftrightarrow{B E} \| \overline{A T}, \mathrm{CB}=3, \mathrm{CA}=10$, and $\mathrm{CE}=6$, what is ET ?

a)	5
b)	14
c)	20
d)	26

$$
\frac{3}{7}=\frac{6}{x}
$$

$$
3 x=42
$$

$$
x=14
$$

$\frac{3}{10}=\frac{6}{6+x}$
or

$$
\begin{aligned}
& 18+3 x=60 \\
& 3 x=42 \\
& x=14
\end{aligned}
$$

4. In $\triangle A B C$, D is on $\overline{A B}$, and E is on $\overline{B C}$ such that $\overline{D E} \| \overline{A C}$. If $\mathrm{DB}=2, \mathrm{DA}=7$, and $\mathrm{DE}=3$, what is AC ?

Not a side-splitter theorem problem!

