Name:	
Date:	Period:

composite transformation to plot $\Delta A'B'C'$

5

4

C (3,-4

-3

-6 -6

-7

6 7 (6,-1)⁹

B (5,-7)

x

Function Composition Review:What's $f(g(x))$? $f(x) = x - 2$ $g(x) = 3x$ $g(2) = 3(2)$ $so g(2) = 6$ $f(g(2)) = f(6) = 6 - 2 = 4$ Note:do inside first				
Another way of writing f(g(x)) is $f \circ g$. Happens 2 nd Happens 1 st				
COMPOSITE TRANSFORMATIONS:				
2 or more transformations in a row applied to a preimage				
Translation Notation:	Reflection Notation:	Rotation Notation:	Dilation Notation:	
Right 2 and down 3	Over the line y = -x	Around origin 270° CCW	n = 2 around origin	
T _{<2,-3>}	R _{y = -x}	R _{0,270° CCW}	D _{0,2}	
Notation: Write the following composition in function composition notation.				
Reflect ΔABC over the line x = -2 and then translate it up four.				
$T_{<0,4>} \circ R_{x=-2}(\Delta ABC)$				

2nd 1st

A'

-6 -4 B″

Yes, the final images ended up in different spots

2b) What single transformation would map

2nd 1st

2a) Complete the composition: $R_{x=-4} \circ R_{x=3} (\Delta ABC)$

4a) Review the transformations from #2a & #3a. Is there a relationship between the distance the shape has translated and the parallel lines used in the reflections? If so, what relationship is there?

Distance translated = double distance between parallel lines

4b) What determines the direction of the translation?

The order of the translation