\qquad
Unit Five: Circle Vocab \& Arcs (IC1)
Date: \qquad Period: \qquad

What is a circle?

A set of all points equidistant from a certain location (center of circle)

1. Circle A and circle B are concentric.

a) What does that mean?

Circles that share the same center

b) If the radius of circle A is 24 cm and the radius of circle B is 18 cm . What scale factor would map circle A onto circle B? Big \rightarrow small (reduction requires a scale factor less than 1)

$$
\frac{18}{24}=\frac{3}{4}
$$

Circle Terminology:

Interior Point - Any point inside the circle	Exterior Point - Any point outside the circle
Major Arc - An arc MORE than $1 / 2$ the circle. ${ }^{*}$ Named with 3 letters.	Minor Arc - An arc LESS than $1 ⁄ 2$ the circle. *Named with 2 letters.
Semi-Circle - An arc that is $1 ⁄ 2$ the circle.	Chord - A segment with both endpoints on the circle
Tangent Line - Line that passes through a circle once (touches)	Secant Line - Line that passes through a circle twice.
Central Angle - An angle at center formed by radii	

2. Match the following for Circle A (use each item once).
a. 9
Major Arc
f. 2,4
Interior Point
3. $\overline{E G}$
4. Point I
b. 7
Diameter
g. 3 Secant line
5. Point H
6. $\overline{F C}$
c. 7, 1 Chord
h. 6 Exterior Point
7. $\overrightarrow{G E}$
8. $\overparen{C B F}$
d. \qquad Minor Arc
i. $\quad 4$ Center
9. Point A
10. $\overparen{C E G}$
e. 10 Tangent line
j. $\quad 8$ Semi-Circle
11. $\overparen{F D}$
12. $\overrightarrow{I J}$

13. Determine whether the arc described is major, minor, or a semicircle.
a) F to G clockwise
major
b) A to F clockwise major
c) J to C clockwise minor
d) K to D clockwise \qquad semicircle

Arc Measure:
A number of degrees which describes a portion of a circle's circumference.
The measure of an arc = the central angle measure that intersects the arc A

$$
\begin{aligned}
& m \widehat{A B}=\mathrm{x}^{\circ} \\
& m \widehat{B C}=\mathrm{y}^{\circ} \\
& m \widehat{A C}=\mathrm{z}^{\circ} \\
& m \widehat{A C B}=(\mathrm{z}+\mathrm{y})^{\circ}
\end{aligned}
$$

Helpful Hints:

- All non-overlapping arcs add to 360°
- Diameters divide circles in half \rightarrow semi circles have 180° measure.
- Sometimes subtracting what's not included from 360° is a good strategy.

1. Determine the arc measure.

$360^{\circ}-100^{\circ}=260^{\circ}$
$360-120-41-100-55=44^{\circ}$
b) $m \overparen{A C}=34^{\circ}$

$180-146=34^{\circ}$

$180-108-31=41^{\circ}$

2. Determine the measure of the requestad arcs.

Given: Circle F

3. Determine the missing information.

Given concentric circles witt $m \overparen{G F}=76^{\circ}$ \& $\mathrm{m} \angle \mathrm{HIE}=147^{\circ} . \overline{C A} \& \overline{F H}$ are diameters.

$$
\begin{aligned}
m \overparen{H E}= & 147^{\circ} \\
& \\
m \overparen{B D C}= & 360^{\circ}-104^{\circ}=256^{\circ} \\
& 180^{\circ}+76^{\circ}=256^{\circ} \\
m \angle \mathrm{CIB}= & .104^{\circ}
\end{aligned}
$$

Central angle measures = arc measures
4. Points A, B, C, D, and E are placed on circle R in this order such that there are five congruent arcs. What is the $m \widehat{B C E}$?

$$
\frac{360}{5}=72^{\circ}
$$

$$
360^{\circ}-144^{\circ}=216^{\circ} \quad \text { or } \quad\left(72^{\circ}\right)(3)=216^{\circ}
$$

