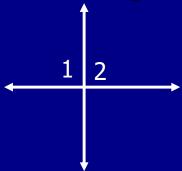
Jeopardy

separay				
Vocab	Congruent Triangles	Parallelograms	Parallel lines	Misc.
\$100	\$100	<u>\$100</u>	<u>\$100</u>	<u>\$100</u>
<u>\$200</u>	\$200	<u>\$200</u>	<u>\$200</u>	\$200
\$300	\$300	<u>\$300</u>	<u>\$300</u>	\$300
<u>\$400</u>	<u>\$400</u>	<u>\$400</u>	<u>\$400</u>	<u>\$400</u>
\$500	<u>\$500</u>	<u>\$500</u>	<u>\$500</u>	<u>\$500</u>

Final Jeopardy

Looking at the drawing, which is NOT true?



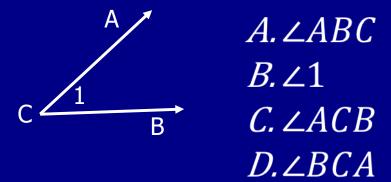
 $A. \angle 1$ and $\angle 2$ are a linear pair

 $B. \angle 1$ and $\angle 2$ are supplimentry

C.∠1 and ∠2 are perpendicular

 $D. \angle 1$ and $\angle 2$ are adjacent angles

Looking at the drawing, which is NOT a way to name the angle?



If you reflect the point (2,5) over y = x, the result will be:

A.(5,2)

B. (-5,2)

C. (-2,5)

D. (2,-5)

- The intersection of two planes results in a _____
 - A. Point
 - B. Line Segment
 - C. Line
 - D. Ray

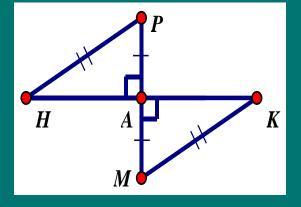
If point B is the midpoint of \overline{AC} ; $\overline{AB} = -2x + 5$ and $\overline{BC} = x^2 - 4x + 2$ Find x

■ -1 (3 doesn't work because \overline{AB} and \overline{BC} would be a negative lengths

- Which is NOT a shortcut to proving 2 triangles are congruent?
 - A. ASA
 - B. SSA
 - C. ASA
 - D. SSS
 - E. HL
 - F. AAS

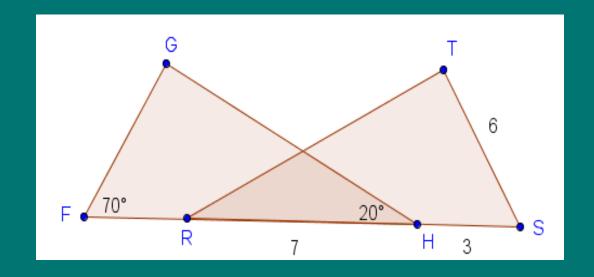
■ What is the shortcut to prove the two triangles

congruent?



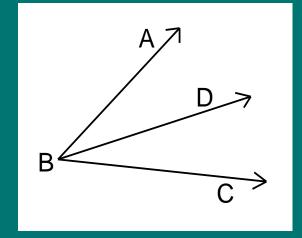
HL

Given: $\Delta FGH \cong \Delta STR$ FH = _____



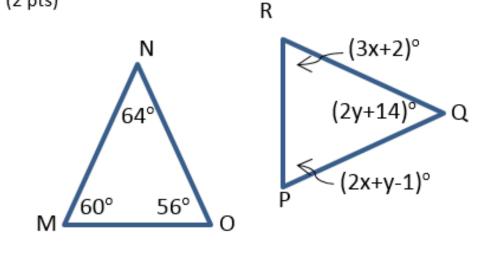
■ Thinking of a proof, Given: \overrightarrow{BD} bisects $\angle ABC$

Statement: _____ Reason:



- Statement: $\angle ABD \cong \angle DBC$
- Reason: Definition of angle bisector

Find the value of x and y given $\Delta MNO \cong \Delta PQR$ the information below. (2 pts)



$$x = 18, y = 25$$

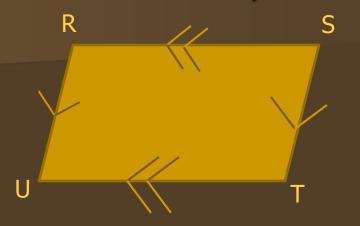
Find the measure of the numbered angle in the rhombus.

90°

If one pair of opposite sides of a quadrilateral are ______, then it is a parallelogram.

Parallel and congruent

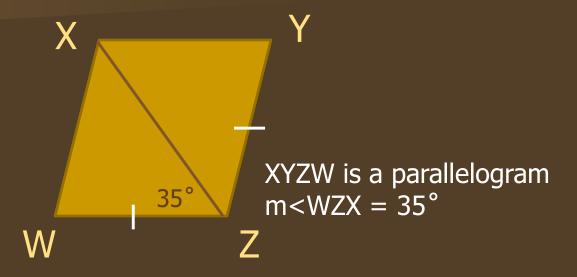
Find RU



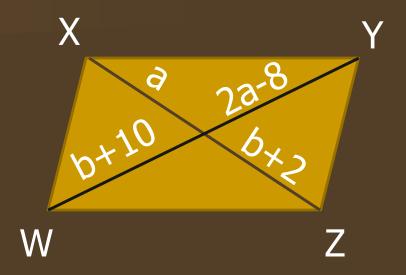
$$RU = 2x + 10$$

 $ST = 4x - 24$

Find m<XYZ</p>



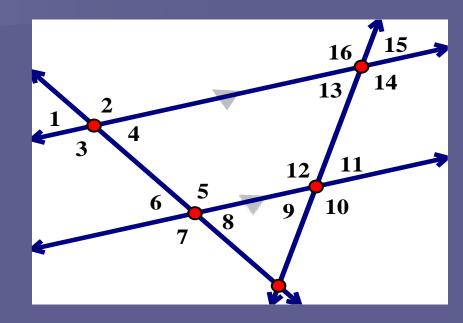
Find the values of a and b.



■ a = 16; b = 14

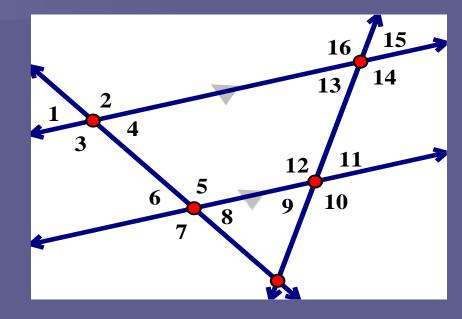
∠16 and ∠12 are:

- A. Vertical angles
- B. Same side exterior
- C. Same side interior
- D. Alternate interior
- E. Alternate exterior
- F. Corresponding



$\angle 4$ and $\angle 5$ are:

- A. Congruent
- B. Supplimentary
- C Maithar

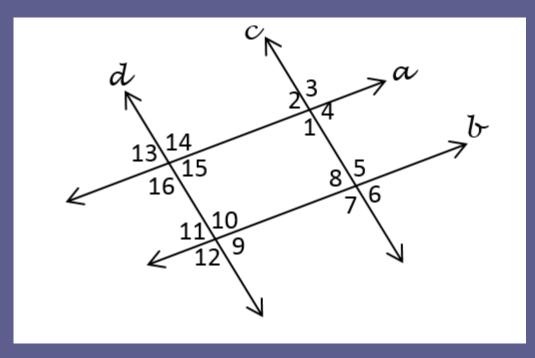


■ Find the slope perpendicular to 3x + 8y = 9

8/3

Which, if any lines are parallel, give a reason

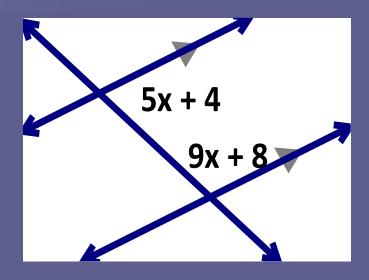
given: $\angle 1 \cong \angle 7$



■ a and b ; corr \angle 's $\cong \rightarrow \parallel$ lines

■ Find x

 $\mathbf{x} = 12$



 Using a compass, when you want to bisect a segment, you need to construct a

Perpendicular bisector

 Using a compass, when you want to construct a circumscribed circle, you first need to construct the

Perpendicular bisectors of each side

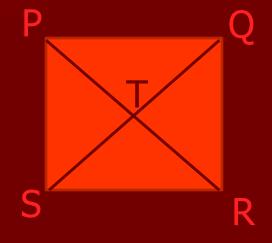
■ Find the distance between (2,5) and (3,8)

■ $\sqrt{10}$

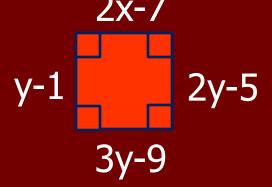
PQRS is a square. Find TR.

$$\frac{PT}{TS} = 9x + 20$$

 $\frac{10x + 8}{1}$



■ Find the values of the variables of the square. 2x-7



$$x = 5; y = 4$$

